
Copyright © COSMIC Software 1995, 2008

OSMIC
SoftwareC Version 4.2

C Cross Compiler User’s Guide
for ST Microelectronics STM8
All Trademarks are the property of their respective owners

Table of Contents
Preface
Organization of this Manual ... 1

Chapter 1
Introduction

Introduction... 4
Document Conventions... 4

Typewriter font ... 4
Italics .. 5
[Brackets] ... 5
Conventions.. 6
Command Line ... 6
Flags ... 6

Compiler Architecture .. 8
Predefined Symbol.. 9
Linking.. 9
Programming Support Utilities... 9
Listings.. 10
Optimizations.. 10
Support for ROMable Code.. 11
Support for eeprom ... 12
Memory Models.. 12

Chapter 2
Tutorial Introduction

Acia.c, Example file.. 16
Default Compiler Operation ... 17

Compiling and Linking... 19
Step 1: Compiling... 19
Step 2: Assembler... 20
Step 3: Linking ... 21
Step 4: Generating S-Records file 23

Linking Your Application... 24
Generating Automatic Data Initialization................................. 25
Specifying Command Line Options ... 28

Chapter 3
Programming Environments

Introduction... 32
Modifying the Runtime Startup .. 34

Description of Runtime Startup Code 35
i

ii
Initializing data in RAM... 36
Memory Models for code smaller than 64K............................. 39
Memory Models for code larger than 64K 39
Handling Large Code and Constants .. 41
Bit Variables ... 42
The const and volatile Type Qualifiers..................................... 43
Performing Input/Output in C... 45
Referencing Absolute Addresses.. 46
Accessing Internal Registers .. 48
Placing Data Objects in The Bss Section 48
Placing Data Objects in Short Range Memory......................... 49

Setting Zero Page Size ... 49
Placing Data Objects in Long Range Memory......................... 50
Placing Data Objects in the EEPROM Space........................... 51
Redefining Sections.. 52
Inserting Inline Assembly Instructions..................................... 54

Inlining with pragmas... 54
Inlining with _asm.. 55
Inlining Labels.. 57

Writing Interrupt Handlers ... 58
Placing Addresses in Interrupt Vectors 59
Inline Function.. 60
Interfacing C to Assembly Language 62
Register Usage.. 64
Data Representation.. 65

Chapter 4
Using The Compiler

Invoking the Compiler.. 68
Compiler Command Line Options 69

File Naming Conventions... 74
Generating Listings... 75
Generating an Error File ... 75
Return Status... 75
Examples .. 75
C Library Support ... 76

How C Library Functions are Packaged............................. 76
Inserting Assembler Code Directly 76
Linking Libraries with Your Program................................ 76
Integer Library Functions... 76
Common Input/Output Functions....................................... 77
Functions Implemented as Macros..................................... 77
Including Header Files ... 78

Descriptions of C Library Functions .. 79
Generate inline assembly code ... 80
Abort program execution.. 81
Find absolute value... 82
Arccosine.. 83
Arcsine.. 84
Arctangent .. 85
Arctangent of y/x.. 86
Convert buffer to double .. 87
Convert buffer to integer .. 88
Convert buffer to long .. 89
Test or get the carry bit... 90
Round to next higher integer .. 91
Verify the recorded checksum.. 92
Verify the recorded checksum.. 93
Verify the recorded checksum.. 94
Verify the recorded checksum.. 95
Cosine ... 96
Hyperbolic cosine... 97
Divide with quotient and remainder 98
Erase the full eeprom space.. 99
Exit program execution .. 100
Exponential... 101
Find double absolute value... 102
Copy a moveable code segment in RAM......................... 103
Round to next lower integer ... 104
Find double modulus .. 105
Extract fraction from exponent part 106
Get character from input stream 107
Get a text line from input stream...................................... 108
Test the interrupt mask bit .. 109
Test the interrupt line level... 110
Test for alphabetic or numeric character 111
Test for alphabetic character .. 112
Test for control character.. 113
Test for digit ... 114
Test for graphic character ... 115
Test for lowercase character ... 116
Test for printing character .. 117
Test for punctuation character .. 118
Test for whitespace character ... 119
Test for uppercase character ... 120
Test for hexadecimal digit .. 121
iii

iv
Find long absolute value .. 122
Scale double exponent.. 123
Long divide with quotient and remainder 124
Natural logarithm ... 125
Common logarithm .. 126
Test for maximum .. 127
Scan buffer for character .. 128
Compare two buffers for lexical order 129
Copy one buffer to another... 130
Copy one buffer to another... 131
Propagate fill character throughout buffer 132
Test for minimum... 133
Extract fraction and integer from double 134
Raise x to the y power .. 135
Output formatted arguments to stdout.............................. 136
Put a character to output stream 141
Put a text line to output stream... 142
Generate pseudo-random number 143
Sin... 144
Hyperbolic sine... 145
Output arguments formatted to buffer.............................. 146
Real square root.. 147
Seed pseudo-random number generator 148
Concatenate strings... 149
Scan string for first occurrence of character 150
Compare two strings for lexical order.............................. 151
Copy one string to another ... 152
Find the end of a span of characters in a set..................... 153
Find length of a string .. 154
Concatenate strings of length n .. 155
Compare two n length strings for lexical order................ 156
Copy n length string ... 157
Find occurrence in string of character in set 158
Scan string for last occurrence of character 159
Find the end of a span of characters not in set 160
Scan string for first occurrence of string 161
Convert buffer to double .. 162
Convert buffer to long .. 163
Convert buffer to unsigned long....................................... 164
Tangent... 165
Hyperbolic tangent ... 166
Convert character to lowercase if necessary 167
Convert character to uppercase if necessary 168

Chapter 5
Using The Assembler

Invoking castm8.. 170
Object File... 172
Listings.. 173
Assembly Language Syntax.. 174

Instructions ... 174
Labels ... 175
Temporary Labels... 176
Constants .. 176
Expressions... 178
Macro Instructions.. 179
Conditional Directives.. 182
Sections... 183
Bit Handling ... 184
Includes... 185

Branch Optimization... 186
Old Syntax .. 186
C Style Directives ... 187
Assembler Directives.. 187

Align the next instruction on a given boundary 188
Define the default base for numerical constants............... 189
Switch to the predefined .bsct section. 190
Turn listing of conditionally excluded code on or off. 191
Allocate constant(s) .. 192
Allocate constant block .. 193
Turn listing of debug directives on or off......................... 194
Allocate variable(s) .. 195
Conditional assembly ... 196
Conditional assembly ... 197
Stop the assembly ... 198
End conditional assembly... 199
End conditional assembly... 200
End macro definition .. 201
End repeat section... 202
Give a permanent value to a symbol 203
Assemble next byte at the next even address relative to the
start of a section.. 204
Generate error message. ... 205
Conditional assembly ... 206
Conditional assembly ... 207
Conditional assembly ... 208
v

vi
Conditional assembly ... 209
Conditional assembly ... 210
Conditional assembly ... 211
Conditional assembly ... 212
Conditional assembly ... 213
Conditional assembly ... 214
Conditional assembly ... 215
Conditional assembly ... 216
Include text from another text file.................................... 217
Turn on listing during assembly....................................... 218
Give a text equivalent to a symbol 219
Create a new local block .. 220
Define a macro ... 221
Send a message out to STDOUT...................................... 223
Terminate a macro definition ... 224
Turn on or off listing of macro expansion........................ 225
Turn off listing. .. 226
Disable pagination in the listing file 227
Creates absolute symbols ... 228
Sets the location counter to an offset from the beginning of a
section... 229
Start a new page in the listing file 230
Specify the number of lines per pages in the listing file .. 231
Repeat a list of lines a number of times 232
Repeat a list of lines a number of times 233
Restore saved section ... 235
Terminate a repeat definition ... 236
Save section.. 237
Turn on or off section crossing... 238
Define a new section .. 239
Give a resetable value to a symbol................................... 241
Insert a number of blank lines before the next statement in the
listing file.. 242
Place code into a section. ... 243
Specify the number of spaces for a tab character in the listing
file... 244
Define default header ... 245
Declare bit symbol as being defined elsewhere 246
Declare a variable to be visible .. 247
Declare symbol as being defined elsewhere..................... 248

Chapter 6
Using The Linker

Introduction... 251
Overview... 252
Linker Command File Processing... 254

Inserting comments in Linker commands 255
Linker Options .. 256

Global Command Line Options.. 257
Segment Control Options ... 258
Segment Grouping.. 262
Linking Files on the Command line 262
Example.. 262
Include Option .. 263
Example.. 263
Private Region Options... 264
Symbol Definition Option .. 265
Reserve Space Option... 267
Handle Dependencies ... 267

Section Relocation .. 268
Address Specification... 268
Overlapping Control ... 268

Setting Bias and Offset ... 268
Setting the Bias... 269
Setting the Offset .. 269
Using Default Placement.. 269
Bit Segment Handling .. 269

Linking Objects... 271
Linking Library Objects.. 271

Library Order.. 272
Libraries Setup Search Paths .. 272

Automatic Data Initialization.. 273
Descriptor Format... 273

Moveable Code ... 274
Checksum Computation.. 276
DEFs and REFs... 278
Special Topics... 279

Private Name Regions .. 279
Renaming Symbols... 280
Absolute Symbol Tables... 283

Description of The Map File... 284
Return Value ... 285
Linker Command Line Examples ... 286
vii

viii
Chapter 7
Debugging Support

Generating Debugging Information.. 290
Generating Line Number Information.............................. 290
Generating Data Object Information................................ 290

The cprd Utility .. 292
Command Line Options ... 292
Examples .. 293

The clst utility ... 294
Command Line Options ... 294

Chapter 8
Programming Support

The chex Utility .. 298
Command Line Options ... 298
Return Status .. 300
Examples .. 300

The clabs Utility ... 302
Command Line Options ... 302
Return Status .. 303
Examples .. 303

The clib Utility.. 305
Command Line Options ... 305
Return Status .. 306
Examples .. 306

The cobj Utility... 308
Command Line Options ... 308
Return Status .. 309
Examples .. 309

The cvdwarf Utility .. 310
Command Line Options ... 310
Return Status .. 312
Examples .. 312

Chapter A
Compiler Error Messages

Parser (cpstm8) Error Messages ... 314
Code Generator (cgstm8) Error Messages.............................. 329
Assembler (castm8) Error Messages 330
Linker (clnk) Error Messages ... 333

Chapter B
Modifying Compiler Operation

The Configuration File.. 338
Changing the Default Options .. 340

Creating Your Own Options... 340
Example .. 341

Chapter C
STM8 Machine Library

Update an int bitfield in near memory.............................. 344
Eeprom char bit field update .. 345
Write a char in eeprom ... 346
Write a long int in eeprom.. 347
Write a short int in eeprom... 348
Move a structure in eeprom.. 349
Add float to float .. 350
Compare floats.. 351
Divide float by float.. 352
Add float to float in memory .. 353
Multiply float by float in memory 354
Subtract float from float in memory................................. 355
Multiply float by float .. 356
Negate a float.. 357
Subtract float from float ... 358
Convert float to integer... 359
Convert float into long integer ... 360
Compare a float in memory to zero.................................. 361
Get a long word from memory ... 362
Get a long word from memory ... 363
Get a word from far memory.. 364
Get a word from far memory.. 365
Get a word from far memory.. 366
Get a word from far memory.. 367
Get a word from far memory.. 368
Get a word from far memory.. 369
Quotient of integer division.. 370
Integer multiplication ... 371
Convert integer into float.. 372
Convert integer into long.. 373
Convert integer into long.. 374
Convert integer into long.. 375
Perform C switch statement on char................................. 376
ix

x

Perform C switch statement on long 377
Perform C switch statement on integer 378
Long integer addition ... 379
Long integer addition ... 380
Bitwise AND for long integers... 381
Long integer compare... 382
Quotient of long integer division 383
Long addition ... 384
Long addition ... 385
Long bitwise AND ... 386
Long shift left ... 387
Long multiplication in memory.. 388
Negate a long integer in memory 389
Long bitwise OR .. 390
Signed long shift right .. 391
Long subtraction... 392
Long subtraction... 393
Unsigned long shift right .. 394
Long bitwise exclusive OR .. 395
Long integer shift left ... 396
Remainder of long integer division 397
Multiply long integer by long integer 398
Negate a long integer.. 399
Bitwise OR with long integers ... 400
Long integer right shift... 401
Long test against zero... 402
Long integer subtraction... 403
Long integer subtraction... 404
Long integer compare with overflow 405
Convert long integer into float ... 406
Load memory into long register 407
Quotient of unsigned long integer division 408
Remainder of unsigned long integer division................... 409
Unsigned long integer shift right...................................... 410
Bitwise exclusive OR with long integers 411
Compare a long integer to zero .. 412
Far pointer addition .. 413
Far pointer addition .. 414
Put a long integer in memory ... 415
Put a long integer in memory ... 416
Put a word in far memory... 417
Get a far pointer from far memory 418

Get a far pointer from far memory 419
Get a far pointer from far memory 420
Get a far pointer from far memory 421
Store long register in far memory..................................... 422
Store long register in memory .. 423
Quotient of signed char division....................................... 424
Quotient of signed char division....................................... 425
Remainder of signed char division 426
Remainder of signed char division 427
Multiply long integer by unsigned byte............................ 428
Convert unsigned integer into float 429
Convert unsigned integer into long 430
Convert unsigned integer into long 431
Convert unsigned integer into long 432
Convert unsigned long integer into float 433
Multiply unsigned integers with long result 434
Store a far pointer into far memory 435
Copy a structure into another ... 436
Copy a structure in far memory.. 437
Copy a large structure in far memory............................... 438
Copy a structure into another ... 439
Copy a large structure into another 440
Store a far pointer into far memory 441
Copy a structure into another ... 442
Copy a structure in far memory.. 443
Copy a large structure in far memory............................... 444
Copy a structure into another ... 445
Copy a large structure into another 446

Chapter D
Compiler Passes

The cpstm8 Parser... 448
Command Line Options ... 448
Extra verifications .. 453
Return Status .. 454
Example.. 454

The cgstm8 Code Generator ... 455
Command Line Options ... 455
Return Status .. 457
Example.. 457

The costm8 Assembly Language Optimizer........................... 458
Command Line Options ... 458
xi

xii
Disabling Optimization .. 459
Return Status .. 459
Example.. 459

Preface
he Cross Compiler User's Guide for STM8 is a reference guide for
programmers writing C programs for STM8 microcontroller envi-

ronments. It provides an overview of how the cross compiler works,
and explains how to compile, assemble, link and debug programs. It
also describes the programming support utilities included with the cross
compiler and provides tutorial and reference information to help you
configure executable images to meet specific requirements. This man-
ual assumes that you are familiar with your host operating system and
with your specific target environment.

Organization of this Manual
This manual is divided into eight chapters and four appendixes.

Chapter 1, “Introduction”, describes the basic organization of the C
compiler and programming support utilities.

Chapter 2, “Tutorial Introduction”, is a series of examples that demon-
strates how to compile, assemble and link a simple C program.

Chapter 3, “Programming Environments”, explains how to use the fea-
tures of C for STM8 to meet the requirements of your particular appli-
cation. It explains how to create a runtime startup for your application,
and how to write C routines that perform special tasks such as: serial I/
O, direct references to hardware addresses, interrupt handling, and
assembly language calls.

T

© 2008 COSMIC Software Preface 1

Organization of this Manual

2

Chapter 4, “Using The Compiler”, describes the compiler options. This
chapter also describes the functions in the C runtime library.

Chapter 5, “Using The Assembler”, describes the STM8 assembler and
its options. It explains the rules that your assembly language source
must follow, and it documents all the directives supported by the assem-
bler.

Chapter 6, “Using The Linker”, describes the linker and its options.
This chapter describes in detail all the features of the linker and their
use.

Chapter 7, “Debugging Support”, describes the support available for
COSMIC's C source level cross debugger and for other debuggers or in-
circuit emulators.

Chapter 8, “Programming Support”, describes the programming sup-
port utilities. Examples of how to use these utilities are also included.

Appendix A, “Compiler Error Messages”, is a list of compile time
error messages that the C compiler may generate.

Appendix B, “Modifying Compiler Operation”, describes the “configu-
ration file” that serves as default behaviour to the C compiler.

Appendix C, “STM8 Machine Library”, describes the assembly lan-
guage routines that provide support for the C runtime library.

Appendix D, “Compiler Passes”, describes the specifics of the parser,
code generator and assembly language optimizer and the command line
options that each accepts.

This manual also contains an Index.
© 2008 COSMIC SoftwarePreface

CHAPTER

1

Introduction
This chapter explains how the compiler operates. It also provides a
basic understanding of the compiler architecture. This chapter includes
the following sections:

• Introduction

• Document Conventions

• Compiler Architecture

• Predefined Symbol

• Linking

• Programming Support Utilities

• Listings

• Optimizations

• Support for ROMable Code

• Support for eeprom

• Memory Models
© 2008 COSMIC Software Introduction 3

Introduction1

4

Introduction
The C cross compiler targeting the STM8 microcontroller reads C
source files, assembly language source files, and object code files, and
produces an executable file. You can request listings that show your C
source interspersed with the assembly language code and object code
that the compiler generates. You can also request that the compiler gen-
erate an object module that contains debugging information that can be
used by COSMIC’s C source level cross debugger or by other debug-
gers or in-circuit emulators.

You begin compilation by invoking the cxstm8 compiler driver with the
specific options you need and the files to be compiled.

Document Conventions
In this documentation set, we use a number of styles and typefaces to
demonstrate the syntax of various commands and to show sample text
you might type at a terminal or observe in a file. The following is a list
of these conventions.

Typewriter font
Used for user input/screen output. Typewriter (or courier) font is
used in the text and in examples to represent what you might type at a
terminal: command names, directives, switches, literal filenames, or
any other text which must be typed exactly as shown. It is also used in
other examples to represent what you might see on a screen or in a
printed listing and to denote executables.

To distinguish it from other examples or listings, input from the user
will appear in a shaded box throughout the text. Output to the terminal
or to a file will appear in a line box.

For example, if you were instructed to type the compiler command that
generates debugging information, it would appears as:

Typewriter font enclosed in a shaded box indicates that this line is
entered by the user at the terminal.

cxstm8 +debug acia.c
© 2008 COSMIC SoftwareIntroduction

Document Conventions
If, however, the text included a partial listing of the file acia.c ‘an
example of text from a file or from output to the terminal’ then type-
writer font would still be used, but would be enclosed in a line box:

Italics
Used for value substitution. Italic type indicates categories of items for
which you must substitute appropriate values, such as arguments or
hypothetical filenames. For example, if the text was demonstrating a
hypothetical command line to compile and generate debugging infor-
mation for any file, it might appear as:

In this example, cxstm8 +debug file.c is shown in typewriter font
because it must be typed exactly as shown. Because the filename must
be specified by the user, however, file is shown in italics.

[Brackets]
Items enclosed in brackets are optional. For example, the line:

[options]

means that zero or more options may be specified because options
appears in brackets. Conversely, the line:

options

means that one or more options must be specified because options is not
enclosed by brackets.

/* defines the ACIA as a structure */
struct acia {

char status;
char data;
} acia @0x6000;

Due to the page width limitations of this manual, a single invocation line
may be represented as two or more lines. You should, however, type the
invocation as one line unless otherwise directed.

NOTE

cxstm8 +debug file.c
© 2008 COSMIC Software Introduction 5

Document Conventions1

6

As another example, the line:

file1.[o|stm8]

means that one file with the extension .o or .sm8 may be specified, and
the line:

file1 [file2 . . .]

means that additional files may be specified.

Conventions
All the compiler utilities share the same optional arguments syntax.
They are invoked by typing a command line.

Command Line
A command line is generally composed of three major parts:

where <program_name> is the name of the program to run, <flags> an
optional series of flags, and <files> a series of files. Each element of a
command line is usually a string separated by whitespace from all the
others.

Flags
Flags are used to select options or specify parameters. Options are rec-
ognized by their first character, which is always a ‘-’ or a ‘+’, followed
by the name of the flag (usually a single letter). Some flags are simply
yes or no indicators, but some must be followed by a value or some
additional information. The value, if required, may be a character
string, a single character, or an integer. The flags may be given in any
order, and two or more may be combined in the same argument, so long
as the second flag can’t be mistaken for a value that goes with the previ-
ous one.

It is possible for each utility to display a list of accepted options by
specifying the -help option. Each option will be displayed alphabeti-
cally on a separate line with its name and a brief description. If an
option requires additional information, then the type of information is

program_name [<flags>] <files>
© 2008 COSMIC SoftwareIntroduction

Document Conventions
indicated by one of the following code, displayed immediately after the
option name:

If the code is immediately followed by the character ‘>’, the option may
be specified more than once with different values. In that case, the
option name must be repeated for every specification.

For example, the options of the chex utility are:

chex accepts the following distinct flags:

Code Type of information

* character string

short integer

long integer

? single character

chex [options] file
-a## absolute file start address
-b## address bias
-e## entry point address
-f? output format
-h suppress header
+h* specify header string
-m# maximum data bytes per line
-n*> output only named segments
-o* output file name
-p use paged address format
-pa use paged address for data
-pl## page numbers for linear mapping
-pn use paged address in bank only
-pp use paged address with mapping
-s output increasing addresses
-w output word addresses
-x* exclude named segment
© 2008 COSMIC Software Introduction 7

Compiler Architecture1

8

Compiler Architecture
The C compiler consists of several programs that work together to
translate your C source files to executable files and listings. cxstm8
controls the operation of these programs automatically, using the
options you specify, and runs the programs described below in the order
listed:

cpstm8 - the C preprocessor and language parser. cpstm8 expands
directives in your C source and parses the resulting text.

Flag Function

-a accept a long integer value

-b accept a long integer value

-e accept a long integer value

-f accept a single character

-h simply a flag indicator

+h accept a character string

-m accept a short integer value

-n accept a character string and may be repeated

-o accept a character string

-p simply a flag indicator

-pl accept a long integer value

-pn simply a flag indicator

-pp simply a flag indicator

-s simply a flag indicator

-w simply a flag indicator

-x accept a character string and may be repeated
© 2008 COSMIC SoftwareIntroduction

Predefined Symbol
cgstm8 - the code generator. cgstm8 accepts the output of cpstm8 and
generates assembly language statements.

costm8 - the assembly language optimizer. costm8 optimizes the
assembly language code that cgstm8 generates.

castm8 - the assembler. castm8 converts the assembly language out-
put of costm8 to a relocatable object module.

Predefined Symbol
The COSMIC compiler defines the __CSMC__ preprocessor symbol. It
expands to a numerical value whose each bit indicates if a specific
option has been activated:

Linking
clnk combines all the object modules that make up your program with
the appropriate modules from the C library. You can also build your
own libraries and have the linker select files from them as well. The
linker generates an executable file which, after further processing with
the chex utility, can be downloaded and run on your target system. If
you specify debugging options when you invoke cxstm8, the compiler
will generate a file that contains debugging information. You can then
use the COSMIC’s debugger to debug your code.

Programming Support Utilities
Once object files are produced, you run clnk (the linker) to produce an
executable image for your target system; you can use the programming
support utilities to inspect the executable.

chex - absolute hex file generator. chex translates executable images
produced by the linker into hexadecimal interchange formats, for use

bit 2 set if unsigned char option specified (-pu)

bit 4 set if reverse bitfield option specified (+rev)

bit 5 set if no enum optimization specified (-pne)
© 2008 COSMIC Software Introduction 9

Listings1

10
with in-circuit emulators and PROM programmers. chex produces the
following formats:

- Motorola S-record format
- standard Intel hex format

clabs - absolute listing utility. clabs translates relocatable listings pro-
duced by the assembler by replacing all relocatable information by
absolute information. This utility must to be used only after the linker.

clib - build and maintain object module libraries. clib allows you to
collect related files into a single named library file for convenient stor-
age. You use it to build and maintain object module libraries in standard
library format.

cobj - object module inspector. cobj allows you to examine standard
format executable and relocatable object files for symbol table informa-
tion and to determine their size and configuration.

cvdwarf - ELF/DWARF format converter. cvdwarf allows you to con-
vert a file produced by the linker into an ELF/DWARF format file.

Listings
Several options for listings are available. If you request no listings, then
error messages from the compiler are directed to your terminal, but no
additional information is provided. Each error is labelled with the C
source file name and line number where the error was detected.

If you request an assembly language and object code listing with inter-
spersed C source, the compiler merges the C source as comments
among the assembly language statements and lines of object code that it
generates. Unless you specify otherwise, the error messages are still
written to your terminal. Your listing is the listing output from the
assembler.

Optimizations
The C cross compiler performs a number of compile time and optimiza-
tions that help make your application smaller and faster:
© 2008 COSMIC SoftwareIntroduction

Support for ROMable Code
• The compiler will perform arithmetic operations in 8-bit precision
if the operands are 8-bit.

• The compiler eliminates unreachable code.

• Branch shortening logic chooses the smallest possible jump/
branch instructions. Jumps to jumps and jumps over jumps are
eliminated as well.

• Integer and float constant expressions are folded at compile time.

• Redundant load and store operations are removed.

• enum is large enough to represent all of its declared values, each
of which is given a name. The names of enum values occupy the
same space as type definitions, functions and object names. The
compiler provides the ability to declare an enum using the small-
est type char, int or long:

• The compiler performs multiplication by powers of two as faster
shift instructions.

• An optimized switch statement produces combinations of tests
and branches, jump tables for closely spaced case labels, a scan
table for a small group of loosely spaced case labels, or a sorted
table for an efficient search.

• The functions in the C library are packaged in three separate
libraries; one of them is built without floating point support. If
your application does not perform floating point calculations, you
can decrease its size and increase its runtime efficiency by linking
with the non-floating-point version of the modules needed.

Support for ROMable Code
The compiler provides the following features to support ROMable code
production. See Chapter 3 for more information.

• Referencing of absolute hardware addresses;

• Control of the STM8 interrupt system;
© 2008 COSMIC Software Introduction 11

Support for eeprom1

12
• Automatic data initialization;

• User configurable runtime startup file;

• Support for mixing C and assembly language code; and

• User configurable executable images suitable for direct input to a
PROM programmer or for direct downloading to a target system.

Support for eeprom
The compiler provides the following features to support eeprom han-
dling:

• @eeprom type qualifier to describe a variable as an eeprom loca-
tion. The compiler generates special sequences when the variable
is modified.

• Library functions for erasure, initialization and copy of eeprom
locations.

Memory Models
The STM8 compiler supports several memory models allowing you to
choose the best configuration for your processor and your application.
You can choose to use 2-bytes addressing (applications smaller than
64k bytes) or 3-bytes addressing. You can also specify where variables
are located in the memory space by default: inside or outside the zero
page (short addressing). For more information, please refer to Chapter
3.

The basic routine to program an eeprom byte is located in the library file
eeprom.s and has been written using the default input/output address .
This file must be modified if using a different base address.

These basic routines are not updating any watchdog, so applications
enabling a watchdog must modify these routines to add watchdog
updates in the wait loops.

NOTE
© 2008 COSMIC SoftwareIntroduction

Memory Models
For information on using the compiler, see Chapter 4.
For information on using the assembler, see Chapter 5.
For information on using the linker, see Chapter 6.
For information on debugging support, see Chapter 7.
For information on using the programming utilities, see Chapter 8.
For information on the compiler passes, see Appendix D.
© 2008 COSMIC Software Introduction 13

CHAPTER

2

Tutorial Introduction
This chapter will demonstrate, step by step, how to compile, assemble
and link the example program acia.c, which is included on your distri-
bution media. Although this tutorial cannot show all the topics relevant
to the COSMIC tools, it will demonstrate the basics of using the com-
piler for the most common applications.

In this tutorial you will find information on the following topics:

• Default Compiler Operation

• Compiling and Linking

• Linking Your Application

• Generating Automatic Data Initialization

• Specifying Command Line Options
© 2008 COSMIC Software Tutorial Introduction 15

Acia.c, Example file2

16
Acia.c, Example file
The following is a listing of acia.c. This C source file is copied during
the installation of the compiler:

/* STM8 EXAMPLE PROGRAM WITH INTERRUPT HANDLING
 * Copyright (c) 2008 by COSMIC Software
 */
#include <iostm8.h>

#define SIZE64 /* buffer size */
#define TRDE0x80 /* transmit ready bit */

/* Authorize interrupts.
 */
#define rim() _asm("rim")

/* Some variables
 */
char buffer[SIZE]; /* reception buffer */
char *ptlec; /* read pointer */
char *ptecr; /* write pointer */

/* Character reception.
 * Loops until a character is received.
 */
char getch(void)

{
char c; /* character to be returned */

while (ptlec == ptecr) /* equal pointers => loop */
;

c = *ptlec++; /* get the received char */
if (ptlec >= &buffer[SIZE])/* put in in buffer */

ptlec = buffer;
return (c);
}

/* Send a char to the SCI.
 */
void outch(char c)

{
while (!(USART_SR & TRDE))/* wait for READY */

;
USART_DR = c; /* send it */
}

© 2008 COSMIC SoftwareTutorial Introduction

Acia.c, Example file
/* Character reception routine.
 * This routine is called on interrupt.
 * It puts the received char in the buffer.
 */
@interrupt void recept(void)

{
USART_SR; /* clear interrupt */
ptecr++ = USART_DR; / get the char */
if (ptecr >= &buffer[SIZE]) /* put it in buffer */

ptecr = buffer;
}

/* Main program.
 * Sets up the SCI and starts an infinite loop
 * of receive transmit.
 */
void main(void)

{
ptecr = ptlec = buffer; /* initialize pointers */
USART_BRR1 = 0xc9; /* parameter for baud rate */
USART_CR1 = 0x00; /* param. for word length */
USART_CR2 = 0x2c; /* parameters for interrupt */
rim(); /* authorize interrupts */
for (;;) /* loop */

outch(getch()); /* get and put a char */
}

Default Compiler Operation
By default, the compiler compiles and assembles your program. You
may then link object files using clnk to create an executable program.

The compiler supports several memory models, for applications smaller
or larger than 64K, defining how the stack is used and where variables
are allocated. A model option should always be specified on the com-
mand line; if nothing is specified, the compiler assumes the +modsl
option (physical stack and globals in long range). See “Memory Models
for code smaller than 64K” in Chapter 3 and “Memory Models for
code larger than 64K” in Chapter 3 for more information.

As it processes the command line, cxstm8 echoes the name of each
input file to the standard output file (your terminal screen by default).
You can change the amount of information the compiler sends to your
terminal screen using command line options, as described later.
© 2008 COSMIC Software Tutorial Introduction 17

Acia.c, Example file2

18
According to the options you will use, the following files, recognized
by the COSMIC naming conventions, will be generated:

file.s Assembler source module
file.o Relocatable object module
file.sm8 input (e.g. libraries) or output (e.g. absolute executable)

file for the linker
© 2008 COSMIC SoftwareTutorial Introduction

Compiling and Linking
Compiling and Linking
To compile and assemble acia.c using the short stack model, type:

The compiler writes the name of the input file it processes:

The result of the compilation process is an object module named acia.o
produced by the assembler. We will, now, show you how to use the dif-
ferent components.

Step 1: Compiling
The first step consists in compiling the C source file and producing an
assembly language file named acia.s.

The -s option directs cxstm8 to stop after having produced the assembly
file acia.s. You can then edit this file with your favourite editor. You can
also visualize it with the appropriate system command (type, cat,
more,...). For example under MS/DOS you would type:

If you wish to get an interspersed C and assembly language file, you
should type:

The -l option directs the compiler to produce an assembly language file
with C source line interspersed in it. Please note that the C source lines
are commented in the assembly language file: they start with ‘;’.

As you use the C compiler, you may find it useful to see the various
actions taken by the compiler and to verify the options you selected.

cxstm8 +mods acia.c

acia.c:

cxstm8 +mods -s acia.c

type acia.s

cxstm8 +mods -l acia.c
© 2008 COSMIC Software Tutorial Introduction 19

Compiling and Linking2

20
The -v option, known as verbose mode, instructs the C compiler to dis-
play all of its actions. For example if you type:

the display will look like something similar to the following:

acia.c:
cpstm8 -o \2.cx1 -i\cxstm8\hstm8 -u -hmods.h acia.c
cgstm8 -o \2.cx2 \2.cx1
costm8 -o acia.s \2.cx2

The compiler runs each pass:

Step 2: Assembler
The second step of the compilation is to assemble the code previously
produced. The relocatable object file produced is acia.o.

or

if you want to use directly the macro cross assembler.

The cross assembler can provide, when necessary, listings, symbol
table, cross reference and more. The following command will generate
a listing file named acia.ls that will also contain a cross reference:

For more information, see Chapter 5, “Using The Assembler”.

cpstm8 the C parser

cgstm8 the assembly code generator

costm8 the optimizer

cxstm8 +mods -v -s acia.c

cxstm8 acia.s

castm8 -i\cxstm8\hstm8 acia.s

castm8 -c -l acia.s
© 2008 COSMIC SoftwareTutorial Introduction

Compiling and Linking
Step 3: Linking
This step consists in linking relocatable files, also referred to as object
modules, produced by the compiler or by the assembler (<files>.o) into
an absolute executable file: acia.sm8 in our example. Code and data
sections will be located at absolute memory addresses. The linker is
used with a command file (acia.lkf in this example).

An application that uses one or more object module(s) may require sev-
eral sections (code, data, interrupt vectors, etc.,...) located at different
addresses. Each object module contains several sections. The compiler
creates the following sections:

In our example, and in the test file provided with the compiler, the
acia.lkf file contains the following information:

line 1 # LINK COMMAND FILE FOR TEST PROGRAM
line 2 # Copyright (c) 2002 by COSMIC Software
line 3 #
line 4 +seg .text -b0xf000 -n.text# program start address
line 5 +seg .const -a .text # constants follow code

Type Description

.text code (or program) section (e.g. ROM)

.fconst large constant and literal data (e.g. ROM, see @far)

.const constant and literal data (e.g. ROM)

.data initialized data in long addressing range memory
(see @near in chapter 3) (e.g. RAM)

.bss all non initialized data in long range memory (e.g.
RAM)

.bsct initialized data in the first 256 bytes (see @tiny in
chapter 3), also called zero page or short address-
ing range.

.ubsct non initialized data in the zero page

.fdata large variables (@far)

.eeprom any variable in eeprom (@eeprom)

.bit bit variables
© 2008 COSMIC Software Tutorial Introduction 21

Compiling and Linking2

22
line 6 +seg .bsct -b0x0 -m0x100# zero page start address
line 7 +seg .ubsct # uninitialized zero page
line 8 crts.o # startup routine
line 9 acia.o # application program
line 10 \cx32\lib\libis.sm8 # C library (if needed)
line 11 \cx32\lib\libm.sm8 # machine library
line 12 +seg .vector -b0x8000 # vectors start address
line 13 vector.o # interrupt vectors

You can create your own link command file by modifying the one pro-
vided with the compiler.

Here is the explanation of the lines in acia.lkf:

lines 1 to 3: These are comment lines. Each line can include comments.
They must be prefixed by the “#” character.

line 4: +seg .text -b0xf000 creates a text (code) segment located
at f000 (hex address) named .text.

line 5: +seg .const -n.text creates a constant segment following
the text segment.

line 6: +seg .bsct -b0x0 -m0x100 creates a zero page segment
located at 0 (hex address) with a maximum size of 256 bytes.

line 7: +seg .ubsct creates an uninitialized zero page segment
located by default after the .bsct segment.

line 8: crts.o runtime startup code. It will be located at 0xf000
(code segment)

line 9: acia.o, the file that constitutes your application. It follows the
startup routine for code and data

line 10: libis.sm8 the integer library to resolve references

line 11: libm.sm8 the machine library to resolve references

line 12: +seg .vector -b0x8000 creates a segment vector (const)
segment located at 8000 (hex address)

line 13: vectors.o interrupt vectors file
© 2008 COSMIC SoftwareTutorial Introduction

Compiling and Linking
By default and in our example, the .bss segment follows the .data seg-
ment.

The crts.o file contains the runtime startup that performs the following
operations:

• initialize the bss, if any

• initialize the stack pointer

• call main() or any other chosen entry point.

For more information, see “Modifying the Runtime Startup” in Chapter
3.

After you have modified the linker command file, you can link by typ-
ing:

Step 4: Generating S-Records file
Although acia.sm8 is an executable image, it may not be in the correct
format to be loaded on your target. Use the chex utility to translate the
format produced by the linker into standard formats. To translate
acia.sm8 to Motorola standard S-record format:

or

acia.hex is now an executable image in Motorola S-record format and
is ready to be loaded in your target system.

For more information, see “The chex Utility” in Chapter 8.

clnk -o acia.sm8 acia.lkf

chex acia.sm8 > acia.hex

chex -o acia.hex acia.sm8
© 2008 COSMIC Software Tutorial Introduction 23

Linking Your Application2

24
Linking Your Application
You can create as many text, data and bss segments as your application
requires. For example, assume we have one bss, two data and two text
segments. Our link command file will look like:

+seg .text -b 0xf000 -n .text # program start address
+seg .const -a .text # constant follow
+seg .data -b 0x100 # data start address
+seg .bss -b 0x200 # bss start address
+seg .bsct -b0x0 -m0x100 # zpage start address
+seg .ubsct -n iram # uninitialized zero page
crts.o # startup routine
acia.o # main program
module1.o # application program
+seg .text -b 0x2000 # start new text section
module2.o # application program
module3.o # application program
\cx\lib\libis.sm8 # C library (if needed)
\cx\lib\libm.sm8 # machine library
+seg .vector -b0x8000 # vectors start address
vector.o # interrupt vectors
#
define these symbols if crtsi is used
#
#+def __endzp=@.ubsct # end of uninitialized zpage
#+def __memory=@.bss # symbol used by startup

In this example the linker will locate and merge crts.o, acia.o and
module1.o in a text segment at 0xf000, a data segment at 0x100 and a
bss segment, if needed at 0x200. zero page variables will be located at
0x0. The rest of the application, module2.o and module3.o and the
libraries will be located and merged in a new text segment at 0x2000
then the interrupt vectors file, vector.o in a vector segment at 0x8000.
All constants will be located after the first text segment.

For more information about the linker, see Chapter 6, “Using The
Linker”.
© 2008 COSMIC SoftwareTutorial Introduction

Generating Automatic Data Initialization
Generating Automatic Data Initialization
Usually, in embedded applications, your program must reside in ROM.

This is not an issue when your application contains code and read-only
data (such as string or const variables). All you have to do is burn a
PROM with the correct values and plug it into your application board.

The problem comes up when your application uses initial data values
that you have defined with initialized static data. These static data val-
ues must reside in RAM.

There are two types of static data initializations:

1) data that is explicitly initialized to a non-zero value:

char var1 = 25;

which is generated into the .bsct section and

2) data that is explicitly initialized to zero or left uninitialized:

char var2;

which is generated into the .ubsct section.

There is one exception to the above rules when you declare data that
will be located in the external memory, using the @near type quali-
fier. In this case, the data is generated into the .data section if it is ini-
tialized or in the .bss section otherwise.

The first method to ensure that these values are correct consists in add-
ing code in your application that reinitializes them from a copy that you
have created and located in ROM, at each restart of the application.

The second method is to use the crtsi.sm8 start-up file:

1) that defines a symbol that will force the linker to create a copy of
the initialized RAM in ROM

2) and that will do the copy from ROM to RAM
© 2008 COSMIC Software Tutorial Introduction 25

Generating Automatic Data Initialization2

26
The following link file demonstrates how to achieve automatic data ini-
tialization.

demo.lkf: link command with automatic init
+seg .text -b 0xf000 -n .text # program start address
+seg .const -a .text # constant follow
+seg .bsct -b 0x0 -m 0x100 # zpage start address
+seg .data -b0x100 # data start address
\cx32\lib\crtsi.sm8 # startup with auto-init
acia.o # main program
module1.o # module program
\cx32\lib\libis.sm8 # C library (if needed)
\cx32\lib\libm.sm8 # machine library
+seg .vector -b 0x8000 # vectors start address
vector.o # interrupt vectors
define these symbols if crtsi is used
+def __endzp=@.ubsct # end of uninitialized zpage
+def __memory=@.bss # end of bss segment

In the above example, the text segment is located at address 0xf000,
the data segment is located at address 0x100, immediately followed by
the bss segment that contains uninitialized data. The initialized data in
ROM will follow the descriptor created by the linker after the code seg-
ment.

In case of multiple code and data segments, a link command file could
be:

demoinit.lkf: link command with automatic init
+seg .text -b 0xf000 -n .text # program start address
+seg .const -a .text # constant follow
+seg .bsct -b 0x0 -m 0x100 # zpage start address
+seg .data -b0x100 # data start address
\cx32\lib\crtsi.sm8 # startup with auto-init
acia.o # main program
module1.o # module program
+seg .text -b0xf800 # new code segment
module2.o # module program
module3.o # module program
\cx32\lib\libis.sm8 # C library (if needed)
\cx32\lib\libm.sm8 # machine library
+seg .vector -b 0x8000 # vectors start address
vector.o # interrupt vectors
define these symbols if crtsi is used
+def __endzp=@.ubsct # end of uninitialized zpage
+def __memory=@.bss # end of bss segment
© 2008 COSMIC SoftwareTutorial Introduction

Generating Automatic Data Initialization
or

demoinit.lkf: link command with automatic init
+seg .text -b 0xf000 -n .text # program start address
+seg .const -a .text # constant follow
+seg .bsct -b 0x0 -m 0x100 # zpage start address
+seg .data -b0x100 # data start address
\cx32\lib\crtsi.sm8 # startup with auto-init
acia.o # main program
module1.o # module program
+seg .text -b0xf800 -it # sets the section attribute
module2.o # module program
module3.o # module program
\cx32\lib\libis.sm8 # C library (if needed)
\cx32\lib\libm.sm8 # machine library
+seg .vector -b 0x8000 # vectors start address
vector.o # interrupt vectors
define these symbols if crtsi is used
+def __endzp=@.ubsct # end of uninitialized zpage
+def __memory=@.bss # end of bss segment

In the first case, the initialized data will be located after the first code
segment. In the second case, the -it option instructs the linker to locate
the initialized data after the segment marked with this flag. The initial-
ized data will be located after the second code segment located at
address 0xf800.

For more information, see “Initializing data in RAM” in Chapter 3 and
“Automatic Data Initialization” in Chapter 6.
© 2008 COSMIC Software Tutorial Introduction 27

Specifying Command Line Options2

28
Specifying Command Line Options
You specify command line options to cxstm8 to control the compilation
process.

To compile and get a relocatable file, type:

The file produced is acia.o.

The -v option instructs the compiler driver to echo the name and options
of each program it calls. The -l option instructs the compiler driver to
create a mixed listing of C code and assembly language code in the file
acia.ls.

To perform the operations described above, enter the command:

When the compiler exits, the following files are left in your current
directory:

• the C source file acia.c

• the C and assembly language listing acia.ls

• the object module acia.o

It is possible to locate listings and object files in specified directories if
they are different from the current one, by using respectively the -cl and
-co options:

This command will compile the acia.c file, create a listing named
acia.ls in the \mylist directory and an object file named acia.o in the
\myobj directory.

cxstm8 +mods acia.c

cxstm8 +mods -v -l acia.c

cxstm8 +mods -cl\mylist -co\myobj -l acia.c
© 2008 COSMIC SoftwareTutorial Introduction

Specifying Command Line Options
cxstm8 allows you to compile more than one file. The input files can be
C source files or assembly source files. You can also mix all of these
files.

If your application is composed with the following files: two C source
files and one assembly source file, you would type:

This command will assemble the start.s file, and compile the two C
source files.

See “Compiler Command Line Options” in Chapter 4 for information
on these and other command line options.

cxstm8 +mods -v start.s acia.c getchar.c
© 2008 COSMIC Software Tutorial Introduction 29

CHAPTER

3

Programming
Environments

This chapter explains how to use the COSMIC program development
system to perform special tasks required by various STM8 applications.
© 2008 COSMIC Software Programming Environments 31

Introduction3

32
Introduction
This chapter provides details about:

• Modifying the Runtime Startup

• Initializing data in RAM

• Memory Models for code smaller than 64K

• Memory Models for code larger than 64K

• Handling Large Code and Constants

• Bit Variables

• The const and volatile Type Qualifiers

• Performing Input/Output in C

• Referencing Absolute Addresses

• Accessing Internal Registers

• Placing Data Objects in The Bss Section

• Placing Data Objects in Short Range Memory

• Placing Data Objects in Long Range Memory

• Placing Data Objects in the EEPROM Space

• Redefining Sections

• Inserting Inline Assembly Instructions

• Writing Interrupt Handlers

• Placing Addresses in Interrupt Vectors

• Inline Function

• Interfacing C to Assembly Language
© 2008 COSMIC SoftwareProgramming Environments

Introduction
• Register Usage

• Data Representation
© 2008 COSMIC Software Programming Environments 33

Modifying the Runtime Startup3

34
Modifying the Runtime Startup
The runtime startup module performs many important functions to
establish a runtime environment for C. The runtime startup file included
with the standard distribution provides the following:

• Initialization of the bss section if any,

• ROM into RAM copy if required,

• Initialization of the stack pointer,

• f_main or other program entry point call, and

• An exit sequence to return from the C environment. Most users
must modify the exit sequence provided to meet the needs of their
specific execution environment.

The following is a listing of the standard runtime startup file crts.sm8
included on your distribution media. It does not perform automatic data
initialization. The runtime startup file can be placed anywhere in mem-
ory. Usually, the startup will be “linked” with the RESET interrupt, and
the startup file may be at any convenient location.

1 ; C STARTUP FOR STM8
2 ; WITHOUT ANY DATA INITIALIZATION
3 ; Copyright (c) 2006 by COSMIC Software
4 ;
5 xref f_main, __stack
6 xdef f_exit, __stext, f__stext
7 ;
8 ; startup routine from reset vector
9 ;
10 switch .text
11 __stext:
12 f__stext:
13 ;
14 ; initialize stack pointer
15 ;
16 ldw x,#__stack ; stack pointer
17 ldw sp,x ; in place
18 ;
19 ; execute main() function
© 2008 COSMIC SoftwareProgramming Environments

Modifying the Runtime Startup
20 ; may be called by a 'jpf' instruction if no return
expected
21 ;
22 callf f_main ; execute main
23 f_exit:
24 jra f_exit ; and stay here
25 ;
26 end

Description of Runtime Startup Code
f_main is the entry point into the user C program.

Line 15 resets the stack pointer.

Line 22 calls main() in the user's C program.

Lines 23 to 24 trap a return from main(). If your application must return
to a monitor, for example, you must modify this line.
© 2008 COSMIC Software Programming Environments 35

Initializing data in RAM3

36
Initializing data in RAM
If you have initialized static variables, which are located in RAM, you
need to perform their initialization before you start your C program.
The clnk linker will take care of that: it moves the initialized data seg-
ments after the first text segment, or the one you have selected with the
-it option, and creates a descriptor giving the starting address, destina-
tion and size of each segment.

The table thus created and the copy of the RAM are located in ROM by
the linker, and used to do the initialization. An example of how to do
this is provided in the crtsi.s file, located in the headers sub-directory.

; C STARTUP FOR STM8
; WITH AUTOMATIC DATA INITIALISATION
; Copyright (c) 2006 by COSMIC Software
;

xref f_main, __memory, __idesc__, __stack
xref.b c_x, c_y, __endzp
xdef f_exit, __stext, f__stext

;
; start address of zpage
;

switch .ubsct
__suzp:
;
; start address of bss
;

switch .bss
__sbss:
;
; startup routine from reset vector
;

switch.text
__stext:
f__stext:
;
; initialize stack pointer
;

ldw x,#__stack ; stack pointer
ldw sp,x ; in place

;
; setup initialized data
;

ldw y,__idesc__ ; data start address
© 2008 COSMIC SoftwareProgramming Environments

Initializing data in RAM
ldw x,#__idesc__+2 ; descriptor address
ibcl:

ld a,(x) ; test flag byte
jreq zero ; no more segment
bcp a,#$60 ; test for moveable code segment
jreq qbcl ; yes, skip it
ldw c_x,x ; save pointer
ldw x,(3,x) ; move end address
ldw c_y,x ; in memory
ldw x,c_x ; reload pointer
ldw x,(1,x) ; start address

dbcl:
ld a,(y) ; transfer
ld (x),a ; byte
incw x ; increment
incw y ; pointers
cpw y,c_y ; last byte ?
jrne dbcl ; no, loop again
ldw x,c_x ; reload pointer

qbcl:
addw x,#5 ; next descriptor
jra ibcl ; and loop

;
; reset uninitialized data in zero page
;
zero:

ldw x,#__suzp ; start of uninitialized zpage
jra loop ; test segment end first

zbcl:
ld (x),a ; clear byte
incw x ; next byte

loop:
cpw x,#__endzp ; end of zpage
jrne zbcl ; no, continue

;
; reset uninitialized data in bss
;

ldw x,#__sbss ; start address
jra ok ; test segment end first

bbcl:
ld (x),a ; clear byte
incw x ; next byte

ok:
cpw x,#__memory ; compare end
jrne bbcl ; not equal, continue

;

© 2008 COSMIC Software Programming Environments 37

Initializing data in RAM3

38
; execute main() function
; may be called by a 'jpf' instruction if no return
expected
;

callf f_main ; execute main
f_exit:

jra f_exit ; and stay here
;

end

crtsi.s performs the same function as described with the crts.s, but with
one additional step. Lines (marked in bold) in crtsi.s include code to
copy the contents of initialized static data, which has been placed in the
text section by the linker, to the desired location in RAM.

The compiler is provided with several startup files implementing the
automatic data initialization depending on the range of variables to be
initialized and the range of the initialization table:

For more information, see “Generating Automatic Data Initialization”
in Chapter 2 and “Automatic Data Initialization” in Chapter 6.

Startup Initialize From Table in

crtsi.s @near @near

crtsx.s @near and @far @near

crtsif.s @near @far

crtsxf.s @near and @far @far
© 2008 COSMIC SoftwareProgramming Environments

Memory Models for code smaller than 64K
Memory Models for code smaller than 64K
The STM8 compiler supports two memory models for application
smaller than 64K, allowing you to choose the most efficient behavior
depending on your processor configuration and your application. All
these models handle code smaller than 64K and then function pointers
are defaulted to @near pointers (2 bytes). Data pointers are defaulted
to @near pointers (2 bytes). The supported models are:

• Stack Short (mods0) global variables are defaulted to short range.
Any global object in long range will have to be accessed explicitly
with the @near modifier unless accessed through a pointer.

• Stack Long (modsl0) global variables are defaulted to long range.
Any object in short range will have to be accessed explicitly with
the @tiny modifier.

The choice of the appropriate model for a given application should be
driven by the amount of globals compared with the available space in
memory. Zero Page variables are more efficient than Long Range varia-
bles but the Zero Page size is limited to 256 bytes.

Memory Models for code larger than 64K
The STM8 compiler supports two memory models for application
larger than 64K, allowing you to choose the most efficient behavior
depending on your processor configuration and your application. All
these models allow the code to be larger than 64K and then function
pointers are defaulted to @far pointers (3 bytes). Data pointers are
defaulted to @near pointers (2 bytes) unless explicitly declared with
the @far modifier. The supported models are:

• Stack Short (mods) global variables are defaulted to short range.
Any global object in long range will have to be accessed explicitly
with the @near modifier unless accessed through a pointer.

When using a model for application smaller than 64K, you must link with
the specific set of libraries (names ending with ‘0’).

NOTE
© 2008 COSMIC Software Programming Environments 39

Memory Models for code larger than 64K3

40
• Stack Long (modsl) global variables are also defaulted to long
range. Any object in short range will have to be accessed explicitly
with the @tiny modifier.

The choice of the appropriate model for a given application should be
driven by the amount of globals compared with the available space in
memory. Zero Page variables are more efficient than Long Range varia-
bles but the Zero Page size is limited to 256 bytes.
© 2008 COSMIC SoftwareProgramming Environments

Handling Large Code and Constants
Handling Large Code and Constants
The STM8 addresses more than 64K of code, dividing the total space in
64K large sections. The compiler allows by default functions to be as
large as needed and to be allocated anywhere in the total space, regard-
less of any sections boundary crossing. The assembly name of functions
allocated anywhere, implicitly declared as @far functions, is prefixed
with the sequence “f_”, the function being called by a callf instruction
and ended with a retf instruction, while the name of functions declared
explicitly as @near functions is prefixed with a single “_”, the function
being called by a call instruction and ended with a ret instruction. Such
@near functions must be completely located inside the same section
and called only by functions located in the same section. Unless trying
to optimize the code space, the @near modifier should not be used.
Such a difference in the function names allows the linker to check that
@far and @near functions are called properly, any mixing being for-
bidden as the stack display would not be the same.

In order to allow large functions to cross section boundaries, the com-
piler has to use the far jump instruction jpf for any unconditional jump
inside the function when the range is too large for a jra instruction. This
makes the code larger even if such a function is not actually crossing a
section boundary. It is possible to force the compiler using the jp
instruction on any function by using the -gnc option. Such functions
may still be @far or @near but cannot be larger than 64K and cannot
be allocated across section. Such functions and @near functions are
checked by the linker in order to verify this constraint.

Constants and literals are normally produced in the .const section
which must be located in the first section. Large constants may be
declared with an @far modifier. In such a case, they are produced in a
.fconst section which may be located anywhere. Although the far space
is used for code and constants, the compiler allows variables to be
declared with the @far modifier. Such variables are allocated in a
.fdata section which may be located anywhere.
© 2008 COSMIC Software Programming Environments 41

Bit Variables3

42
Bit Variables
The C compiler implements bit variables using the _Bool type name as
defined by the new ANSI/ISO standard C99 (also referenced as C9X).
A _Bool variable is a boolean object which only contains the values
true and false. They are implemented on single bits with value 1 for
true and 0 for false. When assigning an expression to a _Bool variable,
the compiler compares the expression against zero and assigns the
boolean result to the boolean variable. So, any integer, real or pointer
expression can be assigned to a boolean variable. It is not possible to
declare arrays of booleans nor pointers to booleans, but booleans can be
used as structure or union fields. Consecutive _Bool fields will be
packed in bytes.

The compiler packs global _Bool variables in bytes using a bit section
named .bit. Local _Bool variables are also packed in bytes regardless of
the memory model. _Bool arguments are passed widened to a single
byte.

_Bool in_range;
_Bool p_valid;
char *ptr;

in_range = (value >= 10) && (value <= 20);
p_valid = ptr; /* p_valid is true if ptr not 0 */
if (p_valid && in_range)
 *ptr = value;
© 2008 COSMIC SoftwareProgramming Environments

The const and volatile Type Qualifiers
The const and volatile Type Qualifiers
You can add the type qualifiers const and volatile to any base type or
pointer type attribute.

Volatile types are useful for declaring data objects that appear to be in
conventional storage but are actually represented in machine registers
with special properties. You use the type qualifier volatile to declare
memory mapped input/output control registers, shared data objects, and
data objects accessed by signal handlers. The compiler will not opti-
mize references to volatile data.

An expression that stores a value in a data object of volatile type stores
the value immediately. An expression that accesses a value in a data
object of volatile type obtains the stored value for each access. Your
program will not reuse the value accessed earlier from a data object of
volatile type.

You use const to declare data objects whose stored values you do not
intend to alter during execution of your program. You can therefore
place data objects of const type in ROM or in write protected program
segments. The cross compiler generates an error message if it encoun-
ters an expression that alters the value stored in a const data object.

The volatile keyword must be used for any data object (variables) that
can be modified outside of the normal flow of the function. Without the
volatile keyword, all data objects are subject to normal redundant code
removal optimizations. Volatile MUST be used for the following condi-
tions:

1) All data objects or variables associated with a memory mapped hard-
ware register e.g. volatile char DDRB @0x05;

2) All global variable that can be modified (written to) by an interrupt
service routine either directly or indirectly. e.g. a global variable used as
a counter in an interrupt service routine.

NOTE
© 2008 COSMIC Software Programming Environments 43

The const and volatile Type Qualifiers3

44
If you declare a static data object of const type at either file level or at
block level, you may specify its stored value by writing a data initial-
izer. The compiler determines its stored value from its data initializer
before program startup, and the stored value continues to exist
unchanged until program termination. If you specify no data initializer,
the stored value is zero. If you declare a data object of const type at
argument level, you tell the compiler that your program will not alter
the value stored in that argument in the related function. If you declare a
data object of const type and dynamic lifetime at block level, you must
specify its stored value by writing a data initializer. If you specify no
data initializer, the stored value is undefined.

The const keyword implies the @near memory space to allow such a
variable to be located in the code space. If a memory space modifier is
explicitly given on a declaration using the const keyword, the compiler
uses the given space instead of the default one, meaning that the object
may not be located in the code space depending on the memory space
given. In such a case, the const keyword still enforces the assignment
checking.

You may specify const and volatile together, in either order. A const
volatile data object could be a Read-only status register, or a status var-
iable whose value may be set by another program.

Examples of data objects declared with type qualifiers are:

char * const x; /* const pointer to char */
int * volatile y; /* volatile pointer to int */
const float pi = 355.0 / 113.0; /* pi is never changed */
© 2008 COSMIC SoftwareProgramming Environments

Performing Input/Output in C

+

Performing Input/Output in C
You perform input and output in C by using the C library functions
getchar, gets, printf, putchar, puts and sprintf. They are described in
chapter 4.

The C source code for these and all other C library functions is included
with the distribution, so that you can modify them to meet your specific
needs. Note that all input/output performed by C library functions is
supported by underlying calls to getchar and putchar. These two func-
tions provide access to all input/output library functions. The library is
built in such a way so that you need only modify getchar and putchar,
the rest of the library is independent of the runtime environment.

Function definitions for getchar and putchar are:

char getchar(void);
char putchar(char c);
© 2008 COSMIC Software Programming Environments 45

Referencing Absolute Addresses3

46
Referencing Absolute Addresses
This C compiler allows you to read from and write to absolute
addresses, and to assign an absolute address to a function entry point or
to a data object. You can give a memory location a symbolic name and
associated type, and use it as you would do with any C identifier. This
feature is usefull for accessing memory mapped I/O ports or for calling
functions at known addresses in ROM.

References to absolute addresses have the general form @<address>,
where <address> is a valid memory location in your environment. For
example, to associate an I/O port at address 0x20 with the identifier
name ttystat, write a definition of the form:

where @0x20 indicates an absolute address specification and not a data
initializer. Since input/output on the STM8 architecture is memory
mapped, performing I/O in this way is equivalent to writing in any
given location in memory.

Such a declaration does not reserve any space in memory. The compiler
still creates a label, using an equate definition, in order to reference the
C object symbolically. This symbol is made public to allow external
usage from any other file.

Individual bits can also be declared as _Bool objects by adding a bit
number to the address using the syntax @<address>:<bitnum>, where
<address> is a byte memory location and <bitnum> a bit number
expressed by a constant value (or expression) between 0 and 7. For
example, to define bit 3 of memory byte at 0x5001 as PB3:

To use the I/O port in your application, write:

char MISCR1 @0x20;

_Bool PB3 @0x5001:3;

char c;
c = MISCR1; /* to read from input port */
MISCR1 = c; /* to write to output port */
© 2008 COSMIC SoftwareProgramming Environments

Referencing Absolute Addresses
Another solutions is to use a #define directive with a cast to the type of
the object being accessed, such as:

which is both inelegant and confusing. The COSMIC implementation is
more efficient and easier to use, at the cost of a slight loss in portability.

Note that COSMIC C does support the pointer and #define methods of
implementing I/O access.

Another example of how to reference a direct memory address, defines
a structure at absolute address 0x6000:

Using this declaration, references to acia.status will refer to mem-
ory location 0x6000 and acia.data will refer to memory location
0x6001. This is very useful if you are building your own custom I/O
hardware that must reside at some location in the STM8 memory map.

#define MISCR1 *(char *)0x20

struct acia
{
char status;
char data;
} acia @0x6000
© 2008 COSMIC Software Programming Environments 47

Accessing Internal Registers3

48
Accessing Internal Registers
All registers are declared in io*.h files provided with the compiler, each
one dedicated to a specific processor. One of these files should be
included in each file using the input-output registers, for example by a:

Note that the compiler will access to these registers as standard varia-
bles. In some case of reading or writing some “int” registers, you should
declare an union (with two char and one int) instead of using directly
the I/O register.

Placing Data Objects in The Bss Section
The compiler automatically reserves space for uninitialized data object.
All such data are placed in the .bss section. All initialized static data are
placed in the .data section. The bss section is located, by default, after
the data section by the linker.

The run-time startup files, crtsi.s and crtsi.s, contain code which initial-
izes the bss section space to zero.

The compiler provides a special option, +nobss, which forces uninitial-
ized data to be explicitly located in the .data section. In such a case,
these variables are considered as being explicitly initialized to zero.

#include <iostm8.h>
© 2008 COSMIC SoftwareProgramming Environments

Placing Data Objects in Short Range Memory
Placing Data Objects in Short Range Memory
The Stack Short model allocates global variables by default in short
range memory. Such variables are located into the section .bsct if they
are initialized, or in the section .ubsct otherwise. An external object
name is published via a xref.b declaration at the assembly language
level. A variable can be explicitly allocated in zero page by using the
@tiny modifier:

To place data objects into short range memory on a file basis, if not yet
selected the memory model, you can use the #pragma directive of the
compiler:

instructs the compiler to place all data objects of storage class extern or
static into short range memory for the current unit of compilation (usu-
ally a file). The section must end with a #pragma space extern []
@near to revert to the default compiler behaviour.

Setting Zero Page Size
You can set the size of the zero page section of your object image at link
time by specifying the following options on the linker command line:

where ## represents the size of the zero page section in bytes. Note that
the size of the zero page section can never exceed 256 bytes.

@tiny char c;

#pragma space extern [] @tiny

The code generator does not check for zero page overflow.
NOTE

+seg .bsct -m##
© 2008 COSMIC Software Programming Environments 49

Placing Data Objects in Long Range Memory3

50
Placing Data Objects in Long Range Memory
The Stack Long model allocates global variables by default in long
range memory. Such variables will be located into the .data section if
they are initialized, or in the .bss section otherwise. An external object
name is published via a xref declaration at the assembly language level.
A variable can be explicitly allocated in Long Range memory by using
the @near modifier. The following declaration:

instructs the compiler to locate the variable ext in the long range mem-
ory.

To place data objects into long range memory on a file basis, if not yet
selected by the memory model, you can use the #pragma directive of
the compiler:

instructs the compiler to place all data objects of storage class extern or
static into Long Range memory for the current unit of compilation (usu-
ally a file).

The section must end with a #pragma space extern [] @tiny to revert
to the default compiler behaviour.

@near char ext;

#pragma space extern [] @near
© 2008 COSMIC SoftwareProgramming Environments

Placing Data Objects in the EEPROM Space
Placing Data Objects in the EEPROM Space
The compiler allows the use to define a variable as an eeprom location,
using the type qualifier @eeprom. This causes the compiler to produce
special code when such a variable is modified. When the compiler
detects a write to an eeprom location, it calls a machine library function
which performs the actual write. An example of such a definition is:

To place all data objects from a file into eeprom, you can use the
#pragma directive of the compiler:

instructs the compiler to treat all extern and static data in the current file
as eeprom locations. The @near modifier is necessary because the eep-
rom is located outside the zero page.

The section must end with a #pragma space extern [] @near or
@tiny, depending on the memory model selected.

The compiler allocates @eeprom variables in a separate section named
.eeprom, which will be located at link time.

The linker directive:

will create a segment located at address 0x4000, with a maximum size
of 2048 bytes.

@eeprom char var;

#pragma space extern [] @eeprom @near

seg .eeprom -b0x4000 -m2048
var_eeprom.o

The code generator cannot check if data address will be eeprom
addresses after linkage.

NOTE
© 2008 COSMIC Software Programming Environments 51

Redefining Sections3

52
Redefining Sections
The compiler uses by default predefined sections to output the various
component of a C program. The default sections are:

It is possible to redirect any of these components to any user defined
section by using the following pragma definition:

#pragma section <attribute> <qualified_name>

where <attribute> is either empty or one of the following sequences:

const
_Bool
@tiny
@near
@far
@eeprom

and <qualified_name> is a section name enclosed as follows:

(name) - parenthesis indicating a code section
[name] - square brackets indicating uninitialized data
{name} - curly braces indicating initialized data

Section Description

.text executable code

.const text string and constants

.fconst large constant variables (@far)

.data initialized variables (@near)

.bss uninitialized variables (@near)

.bsct initialized variables in zero page (@tiny by default)

.ubsct uninitialized variables in zero page (@tiny by default)

.fdata large variables (@far)

.eeprom any variable in eeprom (@eeprom)

.bit bit variables
© 2008 COSMIC SoftwareProgramming Environments

Redefining Sections
A section name is a plain C identifier which does not begin with a dot
character, and which is no longer than 13 characters. The compiler will
prefix automatically the section name with a dot character when passing
this information to the assembler. It is possible to switch back to the
default sections by omitting the section name in the <qualified_name>
sequence.

Each pragma directive starts redirecting the selected component from
the next declarations. Redefining the bss section forces the compiler to
produce the memory definitions for all the previous bss declarations
before to switch to the new section.

The following directives:

redefine the default sections (or the previous one) as following:

- executable code is redirected to section .code
- strings and constants are redirected to section .string
- uninitialized variables are redirected to section .udata
- initialized data are redirected to section .idata
- uninitialized zpage variables are redirected to section .uzpage
- initialized zpage variables are redirected to section .izpage
- eeprom variables are redirected to section .e2prom
- bit variables are redirected to section .bdata

Note that {name} and [name] are equivalent for constant and eeprom
sections as they are all considered as initialized.

The following directive:

switches back the code section to the default section .text.

#pragma section (code)
#pragma section const {string}
#pragma section @near [udata]
#pragma section @near {idata}
#pragma section @tiny [uzpage]
#pragma section @tiny {izpage}
#pragma section @eeprom @near {e2prom}
#pragma section _Bool {bdata}

#pragma section ()
© 2008 COSMIC Software Programming Environments 53

Inserting Inline Assembly Instructions3

54
Inserting Inline Assembly Instructions
The compiler features two ways to insert assembly instructions in a C
file. The first method uses #pragma directives to enclose assembly
instructions. The second method uses a special function call to insert
assembly instructions. The first one is more convenient for large
sequences but does not provide any connection with C object. The sec-
ond one is more convenient to interface with C objects but is more lim-
ited regarding the code length.

Inlining with pragmas
The compiler accepts the following pragma sequences to start and fin-
ish assembly instruction blocks:

The compiler also accepts shorter sequences with the same meaning:

Such an assembler block may be located anywhere, inside or outside a
function. Outside a function, it behaves syntactically as a declaration.
This means that such an assembler block cannot split a C declaration
somewhere in the middle. Inside a function, it behaves syntactically as
one C instruction. This means that there is no trailing semicolon at the
end, and no need for enclosing braces. It also means that such an assem-
bler block cannot split a C instruction or expression somewhere in the
middle.

The following example shows a correct syntax:

Directive Description

#pragma asm start assembler block

#pragma endasm end assembler block

Directive Description

#asm start assembler block

#endasm end assembler block
© 2008 COSMIC SoftwareProgramming Environments

Inserting Inline Assembly Instructions
Inlining with _asm
The _asm() function inserts inline assembly code in your C program.
The syntax is:

The “string constant” argument is the assembly code you want embed-
ded in your C program. “arguments” follow the standard C rules for
passing arguments. The string you specify follows standard C rules. For
example, carriage returns can be denoted by the ‘\n’ character.

For example, to produce the following assembly sequence:

you would write

The ‘\n’ character is used to separate the instructions when writing mul-
tiple instructions in the same line.

#pragma asm
xref asmvar

#pragma endasm

extern char test;

void func(void)
{
if (test)

#asm /* no need for { */
scf ; set carry bit
rlc asmvar; access assembler variable

#endasm
else
test = 1;
}

_asm(“string constant”, arguments...);

ldw x,sp
callf f_main

_asm(“ldw x,sp\n callf f_main\n”);
© 2008 COSMIC Software Programming Environments 55

Inserting Inline Assembly Instructions3

56
_asm() does not perform any checks on its argument string. Only the
assembler can detect errors in code passed as argument to an _asm()
call.

_asm() can be used in expressions, if the code produced by _asm com-
plies with the rules for function returns. For example:

allows to rotate the variable var passed as argument in the a register,
and store the result in the same variable. The variable var is supposed to
be declared as a char, and is loaded in the a register because it is consid-
ered as a first argument. The result is expected in the a register in order
to comply with the return register convention, as described below.

By default, _asm() is returning an int as any undeclared function. To
avoid the need of several definitions (usually conflictuous) when
_asm() is used with different return types, the compiler implements a
special behaviour when a cast is applied to _asm(). In such a case, the
cast is considered to define the return type of _asm() instead of asking
for a type conversion. There is no need for any prototype for the _asm()
function as the parser verifies that the first argument is a string constant.

The argument string must be shorter than 255 characters. If you wish to
insert longer assembly code strings you will have to split your input
among consecutive calls to _asm().

NOTE

var = _asm(“sra a\n rlc a\n rlc a\n”, var);

With both methods, the assembler source is added as is to the code dur-
ing the compilation. The optimizer does not modify the specified instruc-
tions, unless the -a option is specified on the code generator. The
assembler input can use lowercase or uppercase mnemonics, and may
include assembler comments.

NOTE
© 2008 COSMIC SoftwareProgramming Environments

Inserting Inline Assembly Instructions
Inlining Labels
When labels are necessary in the inlined assembly code, the compiler
provides a special syntax allowing local labels to be created and han-
dled without interaction with other labels and the optimizer. The
sequence $N in the assembly source is replaced by a new label name
while the sequence $L is replaced by the label name created by the last
$N. Using this syntax, a simple wait loop may be entered as follow:

#asm
ld a,#7

$N:
dec a
jrne $L ; loop on the previous label

#endasm
© 2008 COSMIC Software Programming Environments 57

Writing Interrupt Handlers3

58
Writing Interrupt Handlers
A function declared with the type qualifier @interrupt is suitable for
direct connection to an interrupt (hardware or software). @interrupt
functions may not return a value. @interrupt functions are allowed to
have arguments, although hardware generated interrupts are not likely
to supply anything meaningful.

When you define an @interrupt function, the compiler uses the “iret”
instruction for the return sequence, and saves, if necessary, the memory
bytes used by the compiler for its internal usage. Those areas are c_x (3
bytes), c_y (3 bytes) and c_lreg (4 bytes). Those bytes will be saved
and restored if the interrupt function uses them directly. If the interrupt
function does not uses these areas directly, but calls another C function,
the c_x and c_y areas will be automatically saved and restored, unless
using the type qualifier @nosvf on the interrupt function definition.
This qualifier can be used when the called functions are known not
using those areas, but the compiler does not perform any verification.
The c_lreg area is not saved implicitly in such a case, in order to keep
the interrupt function as efficient as possible. If any function called by
the interrupt function uses longs or floats, the c_lreg area can be saved
by using the type qualifier @svlreg on the interrupt function definition.
Whatever the model used is, these copies are made directly on the stack.

You define an @interrupt function by using the type qualifier @inter-
rupt to qualify the type returned by the function you declare. An exam-
ple of such a definition is:

@interrupt void it_handler(void)
{
...
}

The @interrupt modifier is an extension to the ANSI standard.
NOTE
© 2008 COSMIC SoftwareProgramming Environments

Placing Addresses in Interrupt Vectors
Placing Addresses in Interrupt Vectors
The compiler implements the special modifier @vector in order to
allow the interrupt table to be declared directly in C. Each entry must be
declared as a function pointer and initialized with a function name. The
compiler will produce instead of an address constant, a 4 byte entry
containing the special opcode 0x82 followed by the 24 bit address of
the interrupt function to be reached.

Refer to the vector.c file provided with the compiler example for a more
accurate implementation description.

A small C construct would be:

where handler1 and so forth are interrupt handlers, which can be
located anywhere in the code space, meaning @near or @far func-
tions. Then, in the linker command file, include the following options
on the directive line:

where vector.o is the file which contains the vector table. This file is
provided in the compiler package.

extern void handler1(), handler2(), handler3();
void (* const @vector vectab[])() =

{
handler1,
handler2,
handler3,
};

+seg .const -b0x8000 vector.o
© 2008 COSMIC Software Programming Environments 59

Inline Function3

60
Inline Function
The compiler is able to inline a function body instead of producing a
function call. This feature allows the program to run faster but produces
a larger code. A function to be inlined has to be defined with the
@inline modifier. Such a function is kept by the compiler and does not
produced any code yet. Each time this function is called in the same
source file, the call is replaced by the full body of the inlined function.
Because inlined functions are in fact local to a source file, they should
be defined in a header file if they have to be used by several source
files. To allow the arguments to be passed properly, inlined functions
must be defined with prototypes.

The compiler allows access to specific instructions or features of the
STM8 processor, using @inline functions. Such functions shall be
declared as external functions with the @inline modifier. The compiler
recognizes three predefined functions when explicitly declared as fol-
lows:

@inline char carry(void);
@inline char irq(void);
@inline char imask(void);

carry the carry function is used to test or get the carry bit from
the condition register. If the carry function is used in a
test, the compiler produces a jnrc or jrc instruction. If
the carry function is used in any other expression, the
compiler produces a code sequence setting the a regis-
ter to 0 or 1 depending on the carry bit value.

irq the irq function is used to test the interrupt line level
using the jrih or jril instruction. The irq function can be
used only in a test

imask the imask function is used to test the interrupt mask bit
in the condition register using the jrm or jrnm instruc-
tion. The imask function can be used only in a test.

Inline functions cannot declare static local variables and cannot call
themselves either directly or indirectly.

NOTE
© 2008 COSMIC SoftwareProgramming Environments

Inline Function
These functions are predeclared in the processor.h header file. A full
description with examples is provided in Chapter 4.

Any other function declared as an @inline will be translated into a call
to a user provided macro. The macro name is obtained by prefixing the
@inline function name with the ‘_’ character. Arguments are allowed
but should be restricted to variable references. Each reference is trans-
lated into the proper assembler expression (same translation as applied
by the compiler) and then passed to the macro as a quoted text string.

@inline functions may use the registers a and/or x, but the compiler can
not check their use and will not save them. To save the registers before
they are used by @inline functions, you must add the @usea and/or the
@usex modifiers.

For example:

tells the compiler that lsub() uses the register a, so that the compiler will
save it. If both registers are used, you must specify both modifiers.

@inline @usea lsub();
© 2008 COSMIC Software Programming Environments 61

Interfacing C to Assembly Language3

62
Interfacing C to Assembly Language
The C cross compiler translates C programs into assembly language
according to the specifications described in this section.

You may write external identifiers in both uppercase and lowercase.
The compiler prepends an underscore ‘_’ character to each identifier. If
the identifier is the name of an @far function, the compiler prepends a
‘f’ character to the extra underscore.

The compiler places function code in the .text section. Function code is
not to be altered or read as data. External function names are published
via xdef declarations.

Compiler literals, containing text strings, float and long constants, and
switch tables, are generated by default into the .const section. An
option on the code generator allows such constants to be produced in
the .text section. In any case, these literals must be linked in the @near
space.

The compiler generates initialized data declared with the @near modi-
fier into the .data section. Such external data names are published via
xref declarations. Data you declare to be of “const” type by adding the
type qualifier const to its base type is generated by default into the
.const section. Const variables declared with the @far modifier are
published in the .fconst section. Initialized data declared with the
@tiny space modifier will be generated into the .bsct section. Such
external data names are published via xref.b declarations. Uninitialized
data are normally generated into the .bss section for @near variables or
the .ubsct section for @tiny variables, unless forced to the .data or
.bsct section by the compiler option +nobss. Variables declared with
the @far modifier are published in the .fdata section. _Bool data is
generated in the .bit section and external names are published via xbit.b
declarations.

Section Declaration Reference

.bsct @tiny char i =2; xdef

.ubsct @tiny char i; xdef
© 2008 COSMIC SoftwareProgramming Environments

Interfacing C to Assembly Language
Function calls are performed according to the following:

1) Arguments are evaluated from right to left. The first argument is
stored in the a register if it is a char or a @tiny pointer, or in the x
register if its type is short, int or @near pointer, or the x register
and the memory location c_x if its type is @far pointer, and if the
function does not return a structure larger than 2 bytes. Other argu-
ments are pushed to the stack. If the two first arguments are of type
char or unsigned char, they are both stored in registers, the first in
the xh register, and the second in the xl register as if they were
considered as an int.

2) The function is called via a callf f_func instruction.

3) Stacked arguments are cleaned out.

.data int init = 1 xdef

.bss int uninit xdef

.text char putchar(c); xdef

.const const char c = 1; xdef

.fconst @far const char c = 1; xdef

.fdata @far char i; xdef

.bit _Bool Pb3; xdef

Any of above extern int out; xref, xbit

Section Declaration Reference
© 2008 COSMIC Software Programming Environments 63

Register Usage3

64
Register Usage
Except for the return value, the registers a, x, y and the condition codes
are undefined on return from a function call. The return value is in a if it
is of type char, @tiny pointer or a one byte structure, x if it is of type
short, integer, @near pointer or a two byte structure. The return value
is in the memory located at symbol c_lreg if it is of type long or float.
The return value is in the memory location c_x (upper byte) and the x
register (lower word) if it is of type @far pointer.

The first argument may be hold in register, and will be stored at the
function entry. Such a function declaration:

will create the following memory area:

locals arg1 return address arg2 arg3

int func(int arg1, int arg2, int arg3)

Stack pointer
© 2008 COSMIC SoftwareProgramming Environments

Data Representation
Data Representation
Data objects of type char are stored as one byte. A plain char is
defaulted to type unsigned char.

Data objects of type short int and int are stored as two bytes, more sig-
nificant byte first.

Short Int, Int

Data objects of type long int are stored as four bytes, in descending
order of significance.

Long

@tiny pointers (short range) are stored as one byte. @near pointers
(long range) are stored as two bytes. @far pointers are stored as three
bytes, in descending order of significance.

@far Pointer

Data objects of type float are represented as for the proposed IEEE
Floating Point Standard; four bytes stored in descending order of signif-
icance. The IEEE representation is: most significant bit is one for nega-
tive numbers, and zero otherwise; the next eight bits are the
characteristic, biased such that the binary exponent of the number is the
characteristic minus 126; the remaining bits are the fraction, starting
with the weighted bit. If the characteristic is zero, the entire number is

015 8 7

Most Significant Byte Less Significant Byte

031 16 15

Most Significant Byte Less Significant Byte

24 23 8 7

016 15

Most Significant Byte Less Significant Byte

23 8 7
© 2008 COSMIC Software Programming Environments 65

Data Representation3

66
taken as zero, and should be all zeros to avoid confusing some routines
that do not process the entire number. Otherwise there is an assumed
0.5 (assertion of the weighted bit) added to all fractions to put them in
the interval [0.5, 1.0). The value of the number is the fraction, multi-
plied by -1 if the sign bit is set, multiplied by 2 raised to the exponent.

Float representation

031 30

CharacteristicSign Mantissa

23 22
© 2008 COSMIC SoftwareProgramming Environments

CHAPTER

4

Using The Compiler
This chapter explains how to use the C cross compiler to compile pro-
grams on your host system. It explains how to invoke the compiler, and
describes its options. It also describes the functions which constitute the
C library. This chapter includes the following sections:

• Invoking the Compiler

• File Naming Conventions

• Generating Listings

• Generating an Error File

• C Library Support

• Descriptions of C Library Functions
© 2008 COSMIC Software Using The Compiler 67

Invoking the Compiler4

68
Invoking the Compiler
To invoke the cross compiler, type the command cxstm8, followed by
the compiler options and the name(s) of the file(s) you want to compile.
All the valid compiler options are described in this chapter. Commands
to compile source files have the form:

cxstm8 is the name of the compiler. The option list is optional. You
must include the name of at least one input file <file>. <file> can be a
C source file with the suffix ‘.c’, or an assembly language source file
with the suffix ‘.s’. You may specify multiple input files with any com-
bination of these suffixes in any order.

If you do not specify any command line options, cxstm8 will compile
your <files> with the default options. It will also write the name of each
file as it is processed. It writes any error messages to STDERR.

The following command line:

compiles and assembles the acia.c C program, using the Stack Short
model, creating the relocatable program acia.o.

If the compiler finds an error in your program, it halts compilation.
When an error occurs, the compiler sends an error message to your ter-
minal screen unless the option -e has been specified on the command
line. In this case, all error messages are written to a file whose name is
obtained by replacing the suffix .c of the source file by the suffix .err.
An error message is still output on the terminal screen to indicate that
errors have been found. Appendix A, “Compiler Error Messages” lists
the error messages the compiler generates. If one or more command
line arguments are invalid, cxstm8 processes the next file name on the
command line and begins the compilation process again.

The example command above does not specify any compiler options. In
this case, the compiler will use only default options to compile and

cxstm8 [options] <files>.[c|s]

cxstm8 +mods acia.c
© 2008 COSMIC SoftwareUsing The Compiler

Invoking the Compiler
assemble your program. You can change the operation of the compiler
by specifying the options you want when you run the compiler.

To specify options to the compiler, type the appropriate option or
options on the command line as shown in the first example above.
Options should be separated with spaces. You must include the ‘-’ or
‘+’ that is part of the option name.

Compiler Command Line Options
The cxstm8 compiler accepts the following command line options,
each of which is described in detail below:

cxstm8 [options] <files>
-a*> assembler options
-ce* path for errors
-cl* path for listings
-co* path for objects
-d*> define symbol
-e create error file
-ec all C files
-es all assembler files
-ex* prefix executables
-f* configuration file
-g*> code generator options
-i*> path for include
-l create listing
-no do not use optimizer
-o*> optimizer options
-p*> parser options
-sm create only dependencies
-s create only assembler file
-sp create only preprocessor file
-t* path for temporary files
-v verbose
-x do not execute
+*> select compiler options
© 2008 COSMIC Software Using The Compiler 69

Invoking the Compiler4

70
Cxstm8 Option Usage

Option Description

-a*> specify assembler options. Up to 60 options can be speci-
fied on the same command line. See Chapter 5, “Using The
Assembler”, for the list of all accepted options.

-ce* specify a path for the error files. By default, errors are cre-
ated in the same directory than the source files.

-cl* specify a path for the listing files. By default, listings are cre-
ated in the same directory than the source files.

-co* specify a path for the object files. By default, objects are
created in the same directory than the source files.

-d*^ specify * as the name of a user-defined preprocessor sym-
bol (#define). The form of the definition is
-dsymbol[=value]; the symbol is set to 1 if value is omitted.
You can specify up to 60 such definitions.

-e log errors from parser in a file instead of displaying them on
the terminal screen. The error file name is defaulted to
<file>.err, and is created only if there are errors.

-ec treat all files as C source files.

-es treat all files as assembler source files.

-ex use the compiler driver’s path as prefix to quickly locate the
executable passes. Default is to use the path variable envi-
ronment. This method is faster than the default behavior but
reduces the command line length.

-f* specify * as the name of a configuration file. This file con-
tains a list of options, which will be automatically used by
the compiler. If no file name is specified, then the compiler
looks for a default configuration file named cxstm8.cxf in the
compiler directory as specified in the installation process.
For more information, see Appendix B, “The Configuration
File”.

-g*> specify code generation options. Up to 60 options can be
specified. See “The cgstm8 Code Generator” in Appendix
D, for the list of all accepted options.
© 2008 COSMIC SoftwareUsing The Compiler

Invoking the Compiler
-i*> define include path. You can define up to 128 different
paths. Each path is a directory name, not terminated by any
directory separator character, or a file containing a list of
directory names.

-l merge C source listing with assembly language code; listing
output defaults to <file>.ls.

-no do not use the optimizer.

-o*> specify optimizer options. Up to 60 options can be specified.
See “The costm8 Assembly Language Optimizer” in Appen-
dix D, for the list of all accepted options.

-p*> specify parser options. Up to 60 options can be specified.
See “The cpstm8 Parser” in Appendix D, for the list of all
accepted options.

-s create only assembler files and stop. Do not assemble the
files produced.

-sm create only a list of ‘make’ compatible dependencies con-
sisting for each source file in the object name followed by a
list of header files needed to compile that file.

-sp create only preprocessed files and stop. Do not compile
files produced. Preprocessed output defaults to <file>.p.
The produced files can be compiled as C source files.

-t* specify path for temporary files. The path is a directory
name, not terminated by any directory separator character.

-v be “verbose”. Before executing a command, print the com-
mand, along with its arguments, to STDOUT. The default is
to output only the names of each file processed. Each name
is followed by a colon and newline.

-x do not execute the passes, instead write to STDOUT the
commands which otherwise would have been performed.

Cxstm8 Option Usage (cont.)

Option Description
© 2008 COSMIC Software Using The Compiler 71

Invoking the Compiler4

72
+*> select a predefined compiler option. These options are pre-
defined in the configuration file. You can specify up to 60
compiler options on the command line. The following docu-
ments the available options as provided by the default con-
figuration file

+compact produce a smaller code but slower than the default behav-
iour. Smaller code is produced by enabling the optimizer
factorization feature with a default depth of seven instruc-
tions.

+debug produce debug information to be used by the debug utilities
provided with the compiler and by any external debugger.

+mods select the Stack Short model. Variables are in short range
memory but pointers are pointing to long range memory.
See “Memory Models for code larger than 64K” in Chapter
3.

+modsl select the Stack Long mode. Variables and pointers are in
and pointing to long range memory. See “Memory Models
for code larger than 64K” in Chapter 3.

+mods0 select the Stack Short model for application smaller than
64K. Variables are in short range memory but pointers are
pointing to long range memory. See “Memory Models for
code smaller than 64K” in Chapter 3.

+modsl0 select the Stack Long model for application smaller than
64K. Variables and pointers are in and pointing to long
range memory. See “Memory Models for code smaller than
64K” in Chapter 3.

+nobss do not use the .bss section for variables allocated in exter-
nal memory. By default, such uninitialized variables are
defined into the .bss section. This option is useful to force
all variables to be grouped into a single section.

+nocst output literals and constants in the code section .text
instead of the specific section .const.

Cxstm8 Option Usage (cont.)

Option Description
© 2008 COSMIC SoftwareUsing The Compiler

Invoking the Compiler
Note that some compiler options are specified to a default value in the
configuration file, cxstm8.cxf, and cannot be modified without modiy-
ing the configuration file itself (see Appendix B, “Modifying Compiler
Operation”). These options are -pu (char is unsigned by default) and
-ppb (pack local bit variables). Take special care if you remove the -pu
option: as libraries expect unsigned chars as argument, it is now the
user responsibility to manually declare the relevant variables as
unsigned char. If you forget this, run time errors may occur.

+proto enforce prototype declaration for functions. An error mes-
sage is issued if a function is used and no prototype decla-
ration is found for it. By default, the compiler accepts both
syntaxes without any error.

+rev reverse the bitfield filling order. By default, bitfields are filled
from the Less Significant Bit (LSB) towards the Most Signifi-
cant Bit (MSB) of a memory cell. If the +rev option is speci-
fied, bitfields are filled from the msb to the lsb.

+split create a separate sub-section per function, up to a maxi-
mum number of 256 sections, thus allowing the linker to
suppress unused functions if the -k option has been speci-
fied on at least one segment in the linker command file. For
objects with more than 256 functions, the functions will be
grouped together to a minimum number of functions per
sub-section to not exceed the maximum number of 256
sub-sections. See “Segment Control Options” in Chapter 6.

+strict direct the compiler to enforce stronger type checking. For
more information, see “Extra verifications” in Appendix D.

+warn enable warnings.

Cxstm8 Option Usage (cont.)

Option Description
© 2008 COSMIC Software Using The Compiler 73

File Naming Conventions4

74
File Naming Conventions
The programs making up the C cross compiler generate the following
output file names, by default. See the documentation on a specific pro-
gram for information about how to change the default file names
accepted as input or generated as output.

Program Input File Name Output File Name

cpstm8 <file>.c <file>.1

cgstm8 <file>.1 <file>.2

costm8 <file>.2 <file>.s

error listing <file>.c <file>.err

assembler listing <file>.[c|s] <file>.ls

C header files <file>.h

castm8 <file>.s <file>.o

source listing <file>.s <file>.ls

clnk <file>.o name required

chex <file> STDOUT

clabs <file.sm8> <files>.la

clib <file> name required

cobj <file> STDOUT

cvdwarf <file.sm8> <file>.elf
© 2008 COSMIC SoftwareUsing The Compiler

Generating Listings
Generating Listings
You can generate listings of the output of any (or all) the compiler
passes by specifying the -l option to cxstm8. You can locate the listing
file in a different directory by using the -cl option.

The example program provided in the package shows the listing pro-
duced by compiling the C source file acia.c with the -l option:

Generating an Error File
You can generate a file containing all the error messages output by the
parser by specifying the -e option to cxstm8. You can locate the error
file in a different directory by using the -ce option. For example, you
would type:

The error file name is obtained from the source filename by replacing
the .c suffix by the .err suffix.

Return Status
cxstm8 returns success if it can process all files successfully. It prints a
message to STDERR and returns failure if there are errors in at least
one processed file.

Examples
To echo the names of each program that the compiler runs:

To save the intermediate files created by the code generator and halt
before the assembler:

cxstm8 +mods -l acia.c

cxstm8 +mods -e prog.c

cxstm8 +mods -v file.c

cxstm8 +mods -s file.c
© 2008 COSMIC Software Using The Compiler 75

C Library Support4

76
C Library Support
This section describes the facilities provided by the C library. The C
cross compiler for STM8 includes all useful functions for programmers
writing applications for ROM-based systems.

How C Library Functions are Packaged
The functions in the C library are packaged in three separate sub-librar-
ies; one for machine-dependent routines (the machine library), one that
does not support floating point (the integer library) and one that pro-
vides full floating point support (the floating point library). If your
application does not perform floating point calculations, you can
decrease its size and increase its runtime efficiency by including only
the integer library.

Inserting Assembler Code Directly
Assembler instructions can be quoted directly into C source files, and
entered unchanged into the output assembly stream, by use of the
_asm() function. This function is not part of any library as it is recog-
nized by the compiler itself. See “Inserting Inline Assembly Instruc-
tions” in Chapter 3.

Linking Libraries with Your Program
If your application requires floating point support, you must specify the
floating point library before the integer library in the linker command
file. Modules common to both libraries will therefore be loaded from
the floating point library, followed by the appropriate modules from the
floating point and integer libraries, in that order.

Integer Library Functions
The following table lists the C library functions in the integer library.

_asm isalpha memcmp strcmp
checksum iscntrl memcpy strcpy
checksum16 isdigit memmove strcspn
checksum16x isgraph memset strlen

When using a model for application smaller than 64K, you must link with
the specific set of libraries (names ending with ‘0’).

NOTE
© 2008 COSMIC SoftwareUsing The Compiler

C Library Support
checksumx islower printf strncat
abs isprint putchar strncmp
atoi ispunct puts strncpy
atol isqrt rand strpbrk
calloc isspace realloc strrchr
div isupper sbreak strspn
free isxdigit scanf strstr
getchar labs sprintf strtol
gets ldiv srand tolower
imask lsqrt sscanf toupper
irq malloc strcat
isalnum memchr strchr

Floating Point Library Functions
The following table lists the C library functions in the float library.

acos cosh log sprintf
asin exp log10 sqrt
atan fabs modf strtod
atan2 floor pow tan
atof fmod printf tanh
ceil frexp sin
cos ldexp sinh

Common Input/Output Functions
Two of the functions that perform stream output are included in both the
integer and floating point libraries. The functionalities of the versions in
the integer library are a subset of the functionalities of their floating
point counterparts. The versions in the integer library cannot print or
manipulate floating point numbers. These functions are: printf, sprintf.

Functions Implemented as Macros
Two of the functions in the C library are actually implemented as “mac-
ros”. Unlike other functions, which (if they do not return int) are
declared in header files and defined in a separate object module that is
linked in with your program later, functions implemented as macros are
defined using #define preprocessor directives in the header file that
declares them. Macros can therefore be used independently of any
library by including the header file that defines and declares them with
your program, as explained below. The functions in the C library that
are implemented as macros are: max and min.
© 2008 COSMIC Software Using The Compiler 77

C Library Support4

78
Including Header Files
If your application calls a C library function, you must include the
header file that declares the function at compile time, in order to use the
proper return type and the proper function prototyping, so that all the
expected arguments are properly evaluated. You do this by writing a
preprocessor directive of the form:

in your program, where <header_name> is the name of the appropriate
header file enclosed in angle brackets. The required header file should
be included before you refer to any function that it declares.

The names of the header files packaged with the C library and the func-
tions declared in each header are listed below.

<assert.h> - Header file for the assertion macro: assert.

<ctype.h> - Header file for the character functions: isalnum, isalpha,
iscntrl, isgraph, isprint, ispunct, isspace, isxdigit, isdigit, isupper,
islower, tolower and toupper.

<float.h> - Header file for limit constants for floating point values.

<io*.h> - Header files for input-output registers. Each register has an
upper-case name which matches the data sheet definition. The compiler
provides a large set of header files for most derivative processors.

<limits.h> - Header file for limit constants of the compiler.

<math.h> - Header file for mathematical functions: acos, asin, atan,
atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, ldexp, log, log10,
modf, pow, sin, sinh, sqrt, tan and tanh.

<processor.h> - Header file for inline functions: carry, irq, imask.

<stdbool.h> - Header file for type bool and values true, false.

<stddef.h> - Header file for types: size_t, wchar_t and ptrdiff_t.

#include <header_name>
© 2008 COSMIC SoftwareUsing The Compiler

Descriptions of C Library Functions
<stdio.h> - Header file for stream input/output: getchar, gets, printf,
putchar, puts and sprintf.

<stdlib.h> - Header file for general utilities: abs, abort, atof, atoi, atol,
div, exit, labs, ldiv, rand, srand, strtod, strtol and strtoul.

<string.h> - Header file for string functions: memchr, memcmp, mem-
cpy, memmove, memset, strcat, strchr, strcmp, strcpy, strcspn, strlen,
strncat, strncmp, strncpy, strpbrk, strrchr, strspn and strstr.

Functions returning int - C library functions that return int and can
therefore be called without any header file are: isalnum, isalpha, iscntrl,
isgraph, isprint, ispunct, isspace, isxdigit, isdigit, isupper, islower,
sbreak, tolower and toupper.

Descriptions of C Library Functions
The following pages describe each of the functions in the C library in
quick reference format. The descriptions are in alphabetical order by
function name.

The syntax field describes the function prototype with the return type
and the expected arguments, and if any, the header file name where this
function has been declared.
© 2008 COSMIC Software Using The Compiler 79

C Library - _asm

_asm

4

80
Description
Generate inline assembly code

Syntax

Function
_asm() generates inline assembly code by copying <string constant>
and quoting it into the output assembly code stream. <arguments> are
first evaluated following the usual rules for passing arguments. The first
argument is kept in the a register or the x:a register pair whenever pos-
sible, and all other arguments are pushed onto the stack. After the
<string constant> code is output, arguments pushed to the stack are
removed before to continue.

Return Value
Nothing, unless _asm() is used in an expression. In that case, standard
return conventions must be followed. See “Register Usage” in Chapter
3.

Example
The sequence inc x; call _main, may be generated by the following call:

_asm(“inc x\n call _main”);

Note that the string-quoting syntax matches the familiar printf() func-
tion.

Notes
_asm() is not packaged in any library. It is recognized by the compiler
itself.

For more information, see “Inserting Inline Assembly Instructions” in
Chapter 3.

_asm(“string constant”, arguments...)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - abort

abort

Description

Abort program execution

Syntax

Function
abort stops the program execution by calling the exit function which is
placed by the startup module just after the call to the main function.

Return Value
abort never returns.

Example
To abort in case of error:

if (fatal_error)
abort();

See Also
exit

Notes
abort is a macro equivalent to the function name exit.

#include <stdlib.h>
void abort(void)
© 2008 COSMIC Software Using The Compiler 81

C Library - abs

abs

4

82
Description
Find absolute value

Syntax

Function
abs obtains the absolute value of i. No check is made to see that the
result can be properly represented.

Return Value
abs returns the absolute value of i, expressed as an int.

Example
To print out a debit or credit balance:

printf(“balance %d%s\n”, abs(bal), (bal < 0)? “CR” : “”);

See Also
labs, fabs

Notes
abs is packaged in the integer library, and may be implemented as a
macro.

#include <stdlib.h>
int abs(int i)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - acos

acos

Description

Arccosine

Syntax

Function
acos computes the angle in radians the cosine of which is x, to full dou-
ble precision.

Return Value
acos returns the closest internal representation to acos(x), expressed as
a double floating value in the range [0, pi]. If x is outside the range
[-1, 1], acos returns zero.

Example
To find the arccosine of x:

theta = acos(x);

See Also
asin, atan, atan2

Notes
acos is packaged in the floating point library.

#include <math.h>
double acos(double x)
© 2008 COSMIC Software Using The Compiler 83

C Library - asin

asin

4

84
Description
Arcsine

Syntax

Function
asin computes the angle in radians the sine of which is x, to full double
precision.

Return Value
asin returns the nearest internal representation to asin(x), expressed as a
double floating value in the range [-pi/2, pi/2]. If x is outside the range
[-1, 1], asin returns zero.

Example
To compute the arcsine of y:

theta = asin(y);

See Also
acos, atan, atan2

Notes
asin is packaged in the floating point library.

#include <math.h>
double asin(double x)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - atan

atan

Description

Arctangent

Syntax

Function
atan computes the angle in radians; the tangent of which is x, atan
computes the angle in radians; the tangent of which is x, to full double
precision.

Return Value
atan returns the nearest internal representation to atan(x), expressed as
a double floating value in the range [-pi/2, pi/2].

Example
To find the phase angle of a vector in degrees:

theta = atan(y/x) * 180.0 / pi;

See Also
acos, asin, atan2

Notes
atan is packaged in the floating point library.

#include <math.h>
double atan(double x)
© 2008 COSMIC Software Using The Compiler 85

C Library - atan2

atan2

4

86
Description
Arctangent of y/x

Syntax

Function
atan2 computes the angle in radians the tangent of which is y/x to full
double precision. If y is negative, the result is negative. If x is negative,
the magnitude of the result is greater than pi/2.

Return Value
atan2 returns the closest internal representation to atan(y/x), expressed
as a double floating value in the range [-pi, pi]. If both input arguments
are zero, atan2 returns zero.

Example
To find the phase angle of a vector in degrees:

theta = atan2(y/x) * 180.0/pi;

See Also
acos, asin, atan

Notes
atan2 is packaged in the floating point library.

#include <math.h>
double atan2(double y, double x)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - atof

atof

Description

Convert buffer to double

Syntax

Function
atof converts the string at nptr into a double. The string is taken as the
text representation of a decimal number, with an optional fraction and
exponent. Leading whitespace is skipped and an optional sign is permit-
ted; conversion stops on the first unrecognizable character. Acceptable
inputs match the pattern:

[+|-]d*[.d*][e[+|-]dd*]

where d is any decimal digit and e is the character ‘e’ or ‘E’. No checks
are made against overflow, underflow, or invalid character strings.

Return Value
atof returns the converted double value. If the string has no recogniza-
ble characters, it returns zero.

Example
To read a string from STDIN and convert it to a double at d:

gets(buf);
d = atof(buf);

See Also
atoi, atol, strtol, strtod

Notes
atof is packaged in the floating point library.

#include <stdlib.h>
double atof(char *nptr)
© 2008 COSMIC Software Using The Compiler 87

C Library - atoi

atoi

4

88
Description
Convert buffer to integer

Syntax

Function
atoi converts the string at nptr into an integer. The string is taken as the
text representation of a decimal number. Leading whitespace is skipped
and an optional sign is permitted; conversion stops on the first unrecog-
nizable character. Acceptable characters are the decimal digits. If the
stop character is l or L, it is skipped over.

No checks are made against overflow or invalid character strings.

Return Value
atoi returns the converted integer value. If the string has no recogniza-
ble characters, zero is returned.

Example
To read a string from STDIN and convert it to an int at i:

gets(buf);
i = atoi(buf);

See Also
atof, atol, strtol, strtod

Notes
atoi is packaged in the integer library.

#include <stdlib.h>
int atoi(char *nptr)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - atol

atol

Description

Convert buffer to long

Syntax

Function
atol converts the string at nptr into a long integer. The string is taken as
the text representation of a decimal number. Leading whitespace is
skipped and an optional sign is permitted; conversion stops on the first
unrecognizable character. Acceptable characters are the decimal digits.
If the stop character is l or L it is skipped over.

No checks are made against overflow or invalid character strings.

Return Value
atol returns the converted long integer. If the string has no recognizable
characters, zero is returned.

Example
To read a string from STDIN and convert it to a long l:

gets(buf);
l = atol(buf);

See Also
atof, atoi, strtol, strtod

Notes
atol is packaged in the integer library.

#include <stdlib.h>
long atol(char *nptr)
© 2008 COSMIC Software Using The Compiler 89

C Library - carry

carry

4

90
Description
Test or get the carry bit

Syntax

Function
carry is an inline function allowing to test or get the value of the carry
bit. When used in an if construct, this function expands directly to a bcc
or bcs instruction. When used in an expression, it expands in order to
build in the a register the value 0 or 1 depending on the carry bit value.

Return Value
carry returns 0 or 1 in the a register if such a value is needed.

Example
low <<= 1; produces sll _low
if (carry()) jruge L1

++high; inc _high
L1:

low <<= 1; produces sll _low
high = carry() clr a

rlc a
ld _high,a

Notes
carry is an inline function and then is not defined in any library. It is
therefore not possible to take its address. For more information, see
“Inline Function” in Chapter 3.

#include <processor.h>
@inline char carry(void)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - ceil

ceil

Description

Round to next higher integer

Syntax

Function
ceil computes the smallest integer greater than or equal to x.

Return Value
ceil returns the smallest integer greater than or equal to x, expressed as
a double floating value.

Example
x ceil(x)

5.1 6.0
5.0 5.0
0.0 0.0

-5.0 -5.0
-5.1 -5.0

See Also
floor

Notes
ceil is packaged in the floating point library.

#include <math.h>
double ceil(double x)
© 2008 COSMIC Software Using The Compiler 91

C Library - _checksum

_checksum

4

92
Description
Verify the recorded checksum

Syntax

Function
_checksum scans the descriptor built by the linker and controls that the
computed checksum is equal to the one expected. For more infomation,
see “Checksum Computation” in Chapter 6.

Return Value
_checksum returns 0 if the checksum is correct, or a value different of 0
otherwise.

Example
if (_checksum())

abort();

Notes
The descriptor is built by the linker only if the _checksum function is
called by the application, even if there are segments marked with the
-ck option.

_checksum is packaged in the integer library.

See Also
_checksumx, _checksum16, _checksum16x

int _checksum()
© 2008 COSMIC SoftwareUsing The Compiler

C Library - _checksumx

_checksumx

Description

Verify the recorded checksum

Syntax

Function
_checksumx scans the descriptor built by the linker and controls at the
end that the computed 8 bit checksum is equal to the one expected. For
more infomation, see “Checksum Computation” in Chapter 6.

Return Value
_checksumx returns 0 if the checksum is correct, or a value different of
0 otherwise.

Example
if (_checksumx())

abort();

Notes
The descriptor is built by the linker only if the _checksumx function is
called by the application, even if there are segments marked with the
-ck option.

_checksumx is packaged in the integer library.

See Also
_checksum, _checksum16, _checksum16x

int _checksumx()
© 2008 COSMIC Software Using The Compiler 93

C Library - _checksum16

_checksum16

4

94
Description
Verify the recorded checksum

Syntax

Function
_checksum16 scans the descriptor built by the linker and controls at the
end that the computed 16 bit checksum is equal to the one expected. For
more infomation, see “Checksum Computation” in Chapter 6.

Return Value
_checksum16 returns 0 if the checksum is correct, or a value different of
0 otherwise.

Example
if (_checksum16())

abort();

Notes
The descriptor is built by the linker only if the _checksum16 function is
called by the application, even if there are segments marked with the
-ck option.

_checksum16 is packaged in the integer library.

See Also
_checksum, _checksumx, _checksum16x

int _checksum16()
© 2008 COSMIC SoftwareUsing The Compiler

C Library - _checksum16x

_checksum16x

Description

Verify the recorded checksum

Syntax

Function
_checksum16x scans the descriptor built by the linker and controls at
the end that the computed 16 bit checksum is equal to the one expected.
For more infomation, see “Checksum Computation” in Chapter 6.

Return Value
_checksum16x returns 0 if the checksum is correct, or a value different
of 0 otherwise.

Example
if (_checksum16x())

abort();

Notes
The descriptor is built by the linker only if the _checksum16x function
is called by the application, even if there are segments marked with the
-ck option.

_checksum16x is packaged in the integer library.

See Also
_checksum, _checksumx, _checksum16

int _checksum16x()
© 2008 COSMIC Software Using The Compiler 95

C Library - cos

cos

4

96
Description
Cosine

Syntax

Function
cos computes the cosine of x, expressed in radians, to full double preci-
sion. If the magnitude of x is too large to contain a fractional quadrant
part, the value of cos is 1.

Return Value
cos returns the nearest internal representation to cos(x) in the range [0,
pi], expressed as a double floating value. A large argument may return a
meaningless value.

Example
To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);

See Also
sin, tan

Notes
cos is packaged in the floating point library.

#include <math.h>
double cos(double x)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - cosh

cosh

Description

Hyperbolic cosine

Syntax

Function
cosh computes the hyperbolic cosine of x to full double precision.

Return Value
cosh returns the nearest internal representation to cosh(x) expressed as a
double floating value. If the result is too large to be properly repre-
sented, cosh returns zero.

Example
To use the Moivre's theorem to compute (cosh x + sinh x) to the nth
power:

demoivre = cosh(n * x) + sinh(n * x);

See Also
exp, sinh, tanh

Notes
cosh is packaged in the floating point library.

#include <math.h>
double cosh(double x)
© 2008 COSMIC Software Using The Compiler 97

C Library - div

div

4

98
Description
Divide with quotient and remainder

Syntax

Function
div divides the integer numer by the integer denom and returns the quo-
tient and the remainder in a structure of type div_t. The field quot con-
tains the quotient and the field rem contains the remainder.

Return Value
div returns a structure of type div_t containing both quotient and
remainder.

Example
To get minutes and seconds from a delay in seconds:

div_t result;
result = div(time, 60);
min = result.quo;
sec = result.rem;

See Also
ldiv

Notes
div is packaged in the integer library.

#include <stdlib.h>
div_t div(int numer, int denom)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - eepera

eepera

Description

Erase the full eeprom space

Syntax

Function
eepera erases the full eeprom space with the global erase sequence. It
does not erase the config register.

Return Value
Nothing.

Example
To erase the full eeprom space:

eepera();

See Also

Notes
eepera is packaged in the machine library.

void eepera(void)
© 2008 COSMIC Software Using The Compiler 99

C Library - exit

exit

4

100
Description
Exit program execution

Syntax

Function
exit stops the execution of a program by switching to the startup mod-
ule just after the call to the main function. The status argument is not
used by the current implementation.

Return Value
exit never returns.

Example
To exit in case of error:

if (fatal_error)
exit();

See Also
abort

Notes
exit is in the startup module.

#include <stdlib.h>
void exit(int status)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - exp

exp

Description

Exponential

Syntax

Function
exp computes the exponential of x to full double precision.

Return Value
exp returns the nearest internal representation to exp x, expressed as a
double floating value. If the result is too large to be properly repre-
sented, exp returns zero.

Example
To compute the hyperbolic sine of x:

sinh = (exp(x) - exp(-x)) / 2.0;

See Also
log

Notes
exp is packaged in the floating point library.

#include <math.h>
double exp(double x)
© 2008 COSMIC Software Using The Compiler 101

C Library - fabs

fabs

4

102
Description
Find double absolute value

Syntax

Function
fabs obtains the absolute value of x.

Return Value
fabs returns the absolute value of x, expressed as a double floating
value.

Example
x fabs(x)

5.0 5.0
0.0 0.0

-3.7 3.7

See Also
abs, labs

Notes
fabs is packaged in the floating point library.

#include <math.h>
double fabs(double x)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - _fctcpy

_fctcpy

Description

Copy a moveable code segment in RAM

Syntax

Function
_fctcpy copies a moveable code segment in RAM from its storage loca-
tion in ROM. _fctcpy scans the descriptor built by the linker and looks
for a moveable segment whose flag byte matches the given argument. If
such a segment is found, it is entirely copied in RAM. Any function
defined in that segment may then be called directly. For more informa-
tion, see “Moveable Code” in Chapter 6.

Return Value
_fctcpy returns a non zero value if a segment has been found and cop-
ied. It returns 0 otherwise.

Example
if (_fctcpy(‘b’))

flash();

Notes
_fctcpy is packaged in the machine library.

int _fctcpy(char name);
© 2008 COSMIC Software Using The Compiler 103

C Library - floor

floor

4

104
Description
Round to next lower integer

Syntax

Function
floor computes the largest integer less than or equal to x.

Return Value
floor returns the largest integer less than or equal to x, expressed as a
double floating value.

Example
x floor(x)

5.1 5.0
5.0 5.0
0.0 0.0

-5.0 -5.0
-5.1 -6.0

See Also
ceil

Notes
floor is packaged in the floating point library.

#include <math.h>
double floor(double x)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - fmod

fmod

Description

Find double modulus

Syntax

Function
fmod computes the floating point remainder of x / y, to full double pre-
cision. The return value of f is determined using the formula:

f = x - i * y

where i is some integer, f is the same sign as x, and the absolute value of
f is less than the absolute value of y.

Return Value
fmod returns the value of f expressed as a double floating value. If y is
zero, fmod returns zero.

Example
x y fmod(x, y)

5.5 5.0 0.5
5.0 5.0 0.0
0.0 0.0 0.0
-5.5 5.0 -0.5

Notes
fmod is packaged in the floating point library.

#include <math.h>
double fmod(double x, double y)
© 2008 COSMIC Software Using The Compiler 105

C Library - frexp

frexp

4

106
Description
Extract fraction from exponent part

Syntax

Function
frexp partitions the double at val, which should be non-zero, into a frac-
tion in the interval [1/2, 1) times two raised to an integer power. It then
delivers the integer power to *exp, and returns the fractional portion as
the value of the function. The exponent is generally meaningless if val
is zero.

Return Value
frexp returns the power of two fraction of the double at val as the return
value of the function, and writes the exponent at *exp.

Example
To implement the sqrt(x) function:

double sqrt(double x)
{
extern double newton(double);
int n;

x = frexp(x, &n);
x = newton(x);
if (n & 1)

x *= SQRT2;
return (ldexp(x, n / 2));
}

See Also
ldexp

Notes
frexp is packaged in the floating point library.

#include <math.h>
double frexp(double val, int *exp)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - getchar

getchar

Description

Get character from input stream

Syntax

Function
getchar obtains the next input character, if any, from the user supplied
input stream. This user must rewrite this function in C or in assembly
language to provide an interface to the input mechanism of the C
library.

Return Value
getchar returns the next character from the input stream. If end of file
(break) is encountered, or a read error occurs, getchar returns EOF.

Example
To copy characters from the input stream to the output stream:

while ((c = getchar()) != EOF)
putchar(c);

See Also
putchar

Notes
getchar is packaged in the integer library, and is by default using the
first serial port SCI 1.

#include <stdio.h>
int getchar(void)
© 2008 COSMIC Software Using The Compiler 107

C Library - gets

gets

4

108
Description
Get a text line from input stream

Syntax

Function
gets copies characters from the input stream to the buffer starting at s.
Characters are copied until a newline is reached or end of file is
reached. If a newline is reached, it is discarded and a NUL is written
immediately following the last character read into s.

gets uses getchar to read each character.

Return Value
gets returns s if successful. If end of file is reached, gets returns NULL.
If a read error occurs, the array contents are indeterminate and gets
returns NULL.

Example
To copy input to output, line by line:

while (puts(gets(buf)))
;

See Also
puts

Notes
There is no assured limit on the size of the line read by gets.

gets is packaged in the integer library.

#include <stdio.h>
char *gets(char *s)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - imask

imask

Description

Test the interrupt mask bit

Syntax

Function
imask is an inline function allowing to test the interrupt mask bit. The
imask function can only be used in an if construct. This function
expands directly to a bms or bmc instruction.

Return Value
None.

Example
if (imask()) produces jrnm L3

++high; inc _high
L3:

if (!imask()) produces bms L1
++high inc _high

L1:

Notes
imask is an inline function and then is not defined in any library. It is
therefore not possible to take its address. For more information, see
“Inline Function” in Chapter 3.

#include <processor.h>
@inline char imask(void)
© 2008 COSMIC Software Using The Compiler 109

C Library - irq

irq

4

110
Description
Test the interrupt line level

Syntax

Function
irq is an inline function allowing to test the interrupt line level. The irq
function can only be used in an if construct. This function expands
directly to a bih or bil instruction.

Return Value
None.

Example
if (irq()) produces jril L3

++high; inc _high
L3:

if (!irq()) produces bih L1
++high inc _high

L1:

Notes
irq is an inline function and then is not defined in any library. It is there-
fore not possible to take its address. For more information, see “Inline
Function” in Chapter 3.

#include <processor.h>
@inline char irq(void)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - isalnum

isalnum

Description

Test for alphabetic or numeric character

Syntax

Function
isalnum tests whether c is an alphabetic character (either upper or
lower case), or a decimal digit.

Return Value
isalnum returns nonzero if the argument is an alphabetic or numeric
character; otherwise the value returned is zero.

Example
To test for a valid C identifier:

if (isalpha(*s) || *s == '_')
for (++s; isalnum(*s) || *s == '_'; ++s)

;

See Also
isalpha, isdigit, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isalnum is packaged in the integer library.

#include <ctype.h>
int isalnum(char c)
© 2008 COSMIC Software Using The Compiler 111

C Library - isalpha

isalpha

4

112
Description
Test for alphabetic character

Syntax

Function
isalpha tests whether c is an alphabetic character, either upper or lower
case.

Return Value
isalpha returns nonzero if the argument is an alphabetic character. Oth-
erwise the value returned is zero.

Example
To find the end points of an alphabetic string:

while (*first && !isalpha(*first))
++first;

for (last = first; isalpha(*last); ++last)
;

See Also
isalnum, isdigit, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isalpha is packaged in the integer library.

#include <ctype.h>
int isalpha(char c)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - iscntrl

iscntrl

Description

Test for control character

Syntax

Function
iscntrl tests whether c is a delete character (0177 in ASCII), or an ordi-
nary control character (less than 040 in ASCII).

Return Value
iscntrl returns nonzero if c is a control character; otherwise the value is
zero.

Example
To map control characters to percent signs:

for (; *s; ++s)
if (iscntrl(*s))

*s = '%';

See Also
isgraph, isprint, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

iscntrl is packaged in the integer library.

#include <ctype.h>
int iscntrl(char c)
© 2008 COSMIC Software Using The Compiler 113

C Library - isdigit

isdigit

4

114
Description
Test for digit

Syntax

Function
isdigit tests whether c is a decimal digit.

Return Value
isdigit returns nonzero if c is a decimal digit; otherwise the value
returned is zero.

Example
To convert a decimal digit string to a number:

for (sum = 0; isdigit(*s); ++s)
sum = sum * 10 + *s - '0';

See Also
isalnum, isalpha, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isdigit is packaged in the integer library.

#include <ctype.h>
int isdigit(char c)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - isgraph

isgraph

Description

Test for graphic character

Syntax

Function
isgraph tests whether c is a graphic character; i.e. any printing charac-
ter except a space (040 in ASCII).

Return Value
isgraph returns nonzero if c is a graphic character. Otherwise the value
returned is zero.

Example
To output only graphic characters:

for (; *s; ++s)
if (isgraph(*s))

putchar(*s);

See Also
iscntrl, isprint, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isgraph is packaged in the integer library.

#include <ctype.h>
int isgraph(char c)
© 2008 COSMIC Software Using The Compiler 115

C Library - islower

islower

4

116
Description
Test for lowercase character

Syntax

Function
islower tests whether c is a lowercase alphabetic character.

Return Value
islower returns nonzero if c is a lowercase character; otherwise the
value returned is zero.

Example
To convert to uppercase:

if (islower(c))
c += 'A' - 'a'; /* also see toupper() */

See Also
isalnum, isalpha, isdigit, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

islower is packaged in the integer library.

#include <ctype.h>
int islower(char c)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - isprint

isprint

Description

Test for printing character

Syntax

Function
isprint tests whether c is any printing character. Printing characters are
all characters between a space (040 in ASCII) and a tilde ‘~’ character
(0176 in ASCII).

Return Value
isprint returns nonzero if c is a printing character; otherwise the value
returned is zero.

Example
To output only printable characters:

for (; *s; ++s)
if (isprint(*s))

putchar(*s);

See Also
iscntrl, isgraph, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isprint is packaged in the integer library.

#include <ctype.h>
int isprint(char c)
© 2008 COSMIC Software Using The Compiler 117

C Library - ispunct

ispunct

4

118
Description
Test for punctuation character

Syntax

Function
ispunct tests whether c is a punctuation character. Punctuation charac-
ters include any printing character except space, a digit, or a letter.

Return Value
ispunct returns nonzero if c is a punctuation character; otherwise the
value returned is zero.

Example
To collect all punctuation characters in a string into a buffer:

for (i = 0; *s; ++s)
if (ispunct(*s))

buf[i++] = *s;

See Also
iscntrl, isgraph, isprint, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

ispunct is packaged in the integer library.

#include <ctype.h>
int ispunct(char c)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - isspace

isspace

Description

Test for whitespace character

Syntax

Function
isspace tests whether c is a whitespace character. Whitespace characters
are horizontal tab (‘\t’), newline (‘\n’), vertical tab (‘\v’), form feed
(‘\f’), carriage return (‘\r’), and space (‘ ’).

Return Value
isspace returns nonzero if c is a whitespace character; otherwise the
value returned is zero.

Example
To skip leading whitespace:

while (isspace(*s))
++s;

See Also
iscntrl, isgraph, isprint, ispunct

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isspace is packaged in the integer library.

#include <ctype.h>
int isspace(char c)
© 2008 COSMIC Software Using The Compiler 119

C Library - isupper

isupper

4

120
Description
Test for uppercase character

Syntax

Function
isupper tests whether c is an uppercase alphabetic character.

Return Value
isupper returns nonzero if c is an uppercase character; otherwise the
value returned is zero.

Example
To convert to lowercase:

if (isupper(c))
c += 'a' - 'A'; /* also see tolower() */

See Also
isalnum, isalpha, isdigit, islower, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isupper is packaged in the integer library.

int isupper(char c)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - isxdigit

isxdigit

Description

Test for hexadecimal digit

Syntax

Function
isxdigit tests whether c is a hexadecimal digit, i.e. in the set
[0123456789abcdefABCDEF].

Return Value
isxdigit returns nonzero if c is a hexadecimal digit; otherwise the value
returned is zero.

Example
To accumulate a hexadecimal digit:

for (sum = 0; isxdigit(*s); ++s)
if (isdigit(*s)

sum = sum * 10 + *s - '0';
else

sum = sum * 10 + tolower(*s) + (10 - 'a');

See Also
isalnum, isalpha, isdigit, islower, isupper, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isxdigit is packaged in the integer library.

#include <ctype.h>
int isxdigit(char c)
© 2008 COSMIC Software Using The Compiler 121

C Library - labs

labs

4

122
Description
Find long absolute value

Syntax

Function
labs obtains the absolute value of l. No check is made to see that the
result can be properly represented.

Return Value
labs returns the absolute value of l, expressed as an long int.

Example
To print out a debit or credit balance:

printf(“balance %ld%s\n”,labs(bal),(bal < 0) ? “CR” : “”);

See Also
abs, fabs

Notes
labs is packaged in the integer library.

#include <stdlib.h>
long labs(long l)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - ldexp

ldexp

Description

Scale double exponent

Syntax

Function
ldexp multiplies the double x by two raised to the integer power exp.

Return Value
ldexp returns the double result x * (1 << exp) expressed as a double
floating value. If a range error occurs, ldexp returns HUGE_VAL.

Example
x exp ldexp(x, exp)

1.0 1 2.0
1.0 0 1.0
1.0 -1 0.5
0.0 0 0.0

See Also
frexp, modf

Notes
ldexp is packaged in the floating point library.

#include <math.h>
double ldexp(double x, int exp)
© 2008 COSMIC Software Using The Compiler 123

C Library - ldiv

ldiv

4

124
Description
Long divide with quotient and remainder

Syntax

Function
ldiv divides the long integer numer by the long integer denom and
returns the quotient and the remainder in a structure of type ldiv_t. The
field quot contains the quotient and the field rem contains the remain-
der.

Return Value
ldiv returns a structure of type ldiv_t containing both quotient and
remainder.

Example
To get minutes and seconds from a delay in seconds:

ldiv_t result;
result = ldiv(time, 60L);
min = result.quo;
sec = result.rem;

See Also
div

Notes
ldiv is packaged in the integer library.

#include <stdlib.h>
ldiv_t ldiv(long numer, long denom)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - log

log

Description

Natural logarithm

Syntax

Function
log computes the natural logarithm of x to full double precision.

Return Value
log returns the closest internal representation to log(x), expressed as a
double floating value. If the input argument is less than zero, or is too
large to be represented, log returns zero.

Example
To compute the hyperbolic arccosine of x:

arccosh = log(x + sqrt(x * x - 1));

See Also
exp

Notes
log is packaged in the floating point library.

#include <math.h>
double log(double x)
© 2008 COSMIC Software Using The Compiler 125

C Library - log10

log10

4

126
Description
Common logarithm

Syntax

Function
log10 computes the common log of x to full double precision by com-
puting the natural log of x divided by the natural log of 10. If the input
argument is less than zero, a domain error will occur. If the input argu-
ment is zero, a range error will occur.

Return Value
log10 returns the nearest internal representation to log10 x, expressed
as a double floating value. If the input argument is less than or equal to
zero, log10 returns zero.

Example
To determine the number of digits in x, where x is a positive integer
expressed as a double:

ndig = log10(x) + 1;

See Also
log

Notes
log10 is packaged in the floating point library.

#include <math.h>
double log10(double x)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - max

max

Description

Test for maximum

Syntax

Function
max obtains the maximum of its two arguments, a and b. Since max is
implemented as a C preprocessor macro, its arguments can be any
numerical type, and type coercion occurs automatically.

Return Value
max is a numerical rvalue of the form ((a < b) ? b : a), suitably paren-
thesized.

Example
To set a new maximum level:

hiwater = max(hiwater, level);

See Also
min

Notes
max is an extension to the proposed ANSI C standard.

max is a macro declared in the <stdlib.h> header file. You can use it by
including <stdlib.h> with your program. Because it is a macro, max
cannot be called from non-C programs, nor can its address be taken.
Arguments with side effects may be evaluated other than once.

#include <stdlib.h>
max(a,b)
© 2008 COSMIC Software Using The Compiler 127

C Library - memchr

memchr

4

128
Description
Scan buffer for character

Syntax

Function
memchr looks for the first occurrence of a specific character c in an n
character buffer starting at s.

Return Value
memchr returns a pointer to the first character that matches c, or NULL
if no character matches.

Example
To map keybuf[] characters into subst[] characters:

if ((t = memchr(keybuf, *s, KEYSIZ)) != NULL)
*s = subst[t - keybuf];

See Also
strchr, strcspn, strpbrk, strrchr, strspn

Notes
memchr is packaged in the integer library.

#include <string.h>
void *memchr(void *s, char c, unsigned char n)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - memcmp

memcmp

Description

Compare two buffers for lexical order

Syntax

Function
memcmp compares two text buffers, character by character, for lexical
order in the character collating sequence. The first buffer starts at s1,
the second at s2; both buffers are n characters long.

Return Value
memcmp returns a short integer greater than, equal to, or less than zero,
according to whether s1 is lexicographically greater than, equal to, or
less than s2.

Example
To look for the string “include” in name:

if (memcmp(name, “include”, 7) == 0)
doinclude();

See Also
strcmp, strncmp

Notes
memcmp is packaged in the integer library.

#include <string.h>
int memcmp(void *s1, void *s2, unsigned char n)
© 2008 COSMIC Software Using The Compiler 129

C Library - memcpy

memcpy

4

130
Description
Copy one buffer to another

Syntax

Function
memcpy copies the first n characters starting at location s2 into the
buffer beginning at s1.

Return Value
memcpy returns s1.

Example
To place “first string, second string” in buf[]:

memcpy(buf, “first string”, 12);
memcpy(buf + 13, “, second string”, 15);

See Also
strcpy, strncpy

Notes
memcpy is packaged in the integer library and may be implemented as
an inline function.

#include <string.h>
void *memcpy(void *s1, void *s2, unsigned char n)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - memmove

memmove

Description

Copy one buffer to another

Syntax

Function
memmove copies the first n characters starting at location s2 into the
buffer beginning at s1. If the two buffers overlap, the function performs
the copy in the appropriate sequence, so the copy is not corrupted.

Return Value
memmove returns s1.

Example
To shift an array of characters:

memmove(buf, &buf[5], 10);

See Also
memcpy

Notes
memmove is packaged in the integer library.

#include <string.h>
void *memmove(void *s1, void *s2, unsigned char n)
© 2008 COSMIC Software Using The Compiler 131

C Library - memset

memset

4

132
Description
Propagate fill character throughout buffer

Syntax

Function
memset floods the n character buffer starting at s with fill character c.

Return Value
memset returns s.

Example
To flood a 512-byte buffer with NULs:

memset(buf,'\0', BUFSIZ);

Notes
memset is packaged in the integer library and may be implemented as
an inline function.

#include <string.h>
void *memset(void *s, char c, unsigned char n)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - min

min

Description

Test for minimum

Syntax

Function
min obtains the minimum of its two arguments, a and b. Since min is
implemented as a C preprocessor macro, its arguments can be any
numerical type, and type coercion occurs automatically.

Return Value
min is a numerical rvalue of the form ((a < b) ? a : b), suitably paren-
thesized.

Example
To set a new minimum level:

nmove = min(space, size);

See Also
max

Notes
min is an extension to the ANSI C standard.

min is a macro declared in the <stdlib.h> header file. You can use it by
including <stdlib.h> with your program. Because it is a macro, min
cannot be called from non-C programs, nor can its address be taken.
Arguments with side effects may be evaluated more than once.

#include <stdlib.h>
min(a, b)
© 2008 COSMIC Software Using The Compiler 133

C Library - modf

modf

4

134
Description
Extract fraction and integer from double

Syntax

Function
modf partitions the double val into an integer portion, which is deliv-
ered to *pd, and a fractional portion, which is returned as the value of
the function. If the integer portion cannot be represented properly in an
int, the result is truncated on the left without complaint.

Return Value
modf returns the signed fractional portion of val as a double floating
value, and writes the integer portion at *pd.

Example
val *pd modf(val, *pd)

5.1 5 0.1
5.0 5 0.0
4.9 4 0.9
0.0 0 0.0

-1.4 -1 -0.4

See Also
frexp, ldexp

Notes
modf is packaged in the floating point library.

#include <math.h>
double modf(double val, double *pd)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - pow

pow

Description

Raise x to the y power

Syntax

Function
pow computes the value of x raised to the power of y.

Return Value
pow returns the value of x raised to the power of y, expressed as a dou-
ble floating value. If x is zero and y is less than or equal to zero, or if x
is negative and y is not an integer, pow returns zero.

Example
x y pow(x, y)

2.0 2.0 4.0
2.0 1.0 2.0
2.0 0.0 1.0
1.0 any 1.0
0.0 -2.0 0
-1.0 2.0 1.0
-1.0 2.1 0

See Also
exp

Notes
pow is packaged in the floating point library.

#include <math.h>
double pow(double x, double y)
© 2008 COSMIC Software Using The Compiler 135

C Library - printf

printf

4

136
Description
Output formatted arguments to stdout

Syntax

Function
printf writes formatted output to the output stream using the format
string at fmt and the arguments specified by ..., as described below.

printf uses putchar to output each character.

Format Specifiers
The format string at fmt consists of literal text to be output, interspersed
with conversion specifications that determine how the arguments are to
be interpreted and how they are to be converted for output. If there are
insufficient arguments for the format, the results are undefined. If the
format is exhausted while arguments remain, the excess arguments are
evaluated but otherwise ignored. printf returns when the end of the for-
mat string is encountered.

Each <conversion specification> is started by the character ‘%’. After
the ‘%’, the following appear in sequence:

<flags> - zero or more which modify the meaning of the conversion
specification.

<field width> - a decimal number which optionally specifies a mini-
mum field width. If the converted value has fewer characters than the
field width, it is padded on the left (or right, if the left adjustment flag
has been given) to the field width. The padding is with spaces unless the
field width digit string starts with zero, in which case the padding is
with zeros.

#include <stdio.h>
int printf(@near char *fmt, ...)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - printf
<precision> - a decimal number which specifies the minimum
number of digits to appear for d, i, o, u, x, and X conversions, the
number of digits to appear after the decimal point for e, E, and f conver-
sions, the maximum number of significant digits for the g and G con-
versions, or the maximum number of characters to be printed from a
string in an s conversion. The precision takes the form of a period fol-
lowed by a decimal digit string. A null digit string is treated as zero.

h - optionally specifies that the following d, i, o, u, x, or X conversion
character applies to a short int or unsigned short int argument (the argu-
ment will have been widened according to the integral widening con-
versions, and its value must be cast to short or unsigned short before
printing). It specifies a short pointer argument if associated with the p
conversion character. If an h appears with any other conversion charac-
ter, it is ignored.

l - optionally specifies that the d, i, o, u, x, and X conversion character
applies to a long int or unsigned long int argument. It specifies a long or
far pointer argument if used with the p conversion character. If the l
appears with any other conversion character, it is ignored.

L - optionally specifies that the following e, E, f, g, and G conversion
character applies to a long double argument. If the L appears with any
other conversion character, it is ignored.

<conversion character> - character that indicates the type of con-
version to be applied.

A field width or precision, or both, may be indicated by an asterisk '*'
instead of a digit string. In this case, an int argument supplies the field
width or precision. The arguments supplying field width must appear
before the optional argument to be converted. A negative field width
argument is taken as a - flag followed by a positive field width. A nega-
tive precision argument is taken as if it were missing.

The <flags> field is zero or more of the following:

space - a space will be prepended if the first character of a signed con-
version is not a sign. This flag will be ignored if space and + flags are
both specified.
© 2008 COSMIC Software Using The Compiler 137

C Library - printf4

138
- result is to be converted to an “alternate form”. For c, d, i, s, and u
conversions, the flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be zero. For p, x and X
conversion, a non-zero result will have Ox or OX prepended to it. For
e, E, f, g, and G conversions, the result will contain a decimal point,
even if no digits follow the point. For g and G conversions, trailing
zeros will not be removed from the result, as they normally are. For p
conversion, it designates hexadecimal output.

+ - result of signed conversion will begin with a plus or minus sign.

- - result of conversion will be left justified within the field.

The <conversion character> is one of the following:

% - a ‘%’ is printed. No argument is converted.

c - the char argument is converted to a character and printed.

d, i, o, u, x, X - the int argument is converted to signed decimal (d or
i), unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal
notation (x or X); the letters abcdef are used for x conversion and the
letters ABCDEF are used for X conversion. The precision specifies the
minimum number of digits to appear; if the value being converted can
be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with
precision of zero is no characters.

e, E - the double argument is converted in the style [-]d.ddde+dd,
where there is one digit before the decimal point and the number of dig-
its after it is equal to the precision. If the precision is missing, six digits
are produced; if the precision is zero, no decimal point appears. The E
format code will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. However, if
the magnitude to be printed is greater than or equal to 1E+100, addi-
tional exponent digits will be printed as necessary.

f - the double argument is converted to decimal notation in the style
[-]ddd.ddd, where the number of digits following the decimal point is
equal to the precision specification. If the precision is missing, it is
© 2008 COSMIC SoftwareUsing The Compiler

C Library - printf
taken as 6. If the precision is explicitly zero, no decimal point appears.
If a decimal point appears, at least one digit appears before it.

g, G - the double argument is printed in style f or e (or in style E in the
case of a G format code), with the precision specifying the number of
significant digits. The style used depends on the value converted; style
e will be used only if the exponent resulting from the conversion is less
than -4 or greater than the precision. Trailing zeros are removed from
the result; a decimal point appears only if it is followed by a digit.

n - the argument is taken to be an int * pointer to an integer into which
is written the number of characters written to the output stream so far by
this call to printf. No argument is converted.

p - the argument is taken to be a void * pointer to an object. The value
of the pointer is converted to a sequence of printable characters, and
printed as a hexadecimal number with the number of digits printed
being determined by the field width.

s, S - the argument is taken to be a char * pointer to a string. When the
Compact model is used, the s format will use a @tiny pointer and the S
format will use a @near pointer. Characters from the string are written
up to, but not including, the terminating NUL, or until the number of
characters indicated by the precision are written. If the precision is
missing, it is taken to be arbitrarily large, so all characters before the
first NUL are printed.

If the character after '%' is not a valid conversion character, the behav-
ior is undefined.

If any argument is or points to an aggregate (except for an array of char-
acters using %s conversion or any pointer using %p conversion),
unpredictable results will occur.

A nonexistent or small field width does not cause truncation of a field;
if the result is wider than the field width, the field is expanded to con-
tain the conversion result.

Return Value
printf returns the number of characters transmitted, or a negative
number if a write error occurs.
© 2008 COSMIC Software Using The Compiler 139

C Library - printf4

140
Notes
A call with more conversion specifiers than argument variables will
cause unpredictable results.

Example
To print arg, which is a double with the value 5100.53:

printf(“%8.2f\n”, arg);
printf(“%*.*f\n”, 8, 2, arg);

both forms will output: 05100.53

See Also
sprintf

Notes
printf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of printf is a subset
of the functionality of the floating point version. The integer only ver-
sion cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of printf, the following conversion
specifiers are invalid: e, E, f, g and G. The L modifier is also invalid.

If printf encounters an invalid conversion specifier, the invalid specifier
is ignored and no special message is generated.
© 2008 COSMIC SoftwareUsing The Compiler

C Library - putchar

putchar

Description

Put a character to output stream

Syntax

Function
putchar copies c to the user specified output stream.

You must rewrite putchar in either C or assembly language to provide
an interface to the output mechanism to the C library.

Return Value
putchar returns c. If a write error occurs, putchar returns EOF.

Example
To copy input to output:

while ((c = getchar()) != EOF)
putchar(c);

See Also
getchar

Notes
putchar is packaged in the integer library, and is by default using the
first serial port SCI 1.

#include <stdio.h>
int putchar(char c)
© 2008 COSMIC Software Using The Compiler 141

C Library - puts

puts

4

142
Description
Put a text line to output stream

Syntax

Function
puts copies characters from the buffer starting at s to the output stream
and appends a newline character to the output stream.

puts uses putchar to output each character. The terminating NUL is not
copied.

Return Value
puts returns zero if successful, or else nonzero if a write error occurs.

Example
To copy input to output, line by line:

while (puts(gets(buf)))
;

See Also
gets

Notes
puts is packaged in the integer library.

#include <stdio.h>
int puts(char *s)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - rand

rand

Description

Generate pseudo-random number

Syntax

Function
rand computes successive pseudo-random integers in the range
[0, 32767], using a linear multiplicative algorithm which has a period of
2 raised to the power of 32.

Example
int dice()

{
return (rand() % 6 + 1);
}

Return Value
rand returns a pseudo-random integer.

See Also
srand

Notes
rand is packaged in the integer library.

#include <stdlib.h>
int rand(void)
© 2008 COSMIC Software Using The Compiler 143

C Library - sin

sin

4

144
Description
Sin

Syntax

Function
sin computes the sine of x, expressed in radians, to full double preci-
sion. If the magnitude of x is too large to contain a fractional quadrant
part, the value of sin is 0.

Return Value
sin returns the closest internal representation to sin(x) in the range
[-pi/2, pi/2], expressed as a double floating value. A large argument
may return a meaningless result.

Example
To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);

See Also
cos, tan

Notes
sin is packaged in the floating point library.

#include <math.h>
double sin(double x)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - sinh

sinh

Description

Hyperbolic sine

Syntax

Function
sinh computes the hyperbolic sine of x to full double precision.

Return Value
sinh returns the closest internal representation to sinh(x), expressed as a
double floating value. If the result is too large to be properly repre-
sented, sinh returns zero.

Example
To obtain the hyperbolic sine of complex z:

typedef struct
{
double x, iy;
}complex;

complex z;

z.x = sinh(z.x) * cos(z.iy);
z.iy = cosh(z.x) * sin(z.iy);

See Also
cosh, exp, tanh

Notes
sinh is packaged in the floating point library.

#include <math.h>
double sinh(double x)
© 2008 COSMIC Software Using The Compiler 145

C Library - sprintf

sprintf

4

146
Description
Output arguments formatted to buffer

Syntax

Function
sprintf writes formatted to the buffer pointed at by s using the format
string at fmt and the arguments specified by ..., in exactly the same way
as printf. See the description of the printf function for information on
the format conversion specifiers. A NUL character is written after the
last character in the buffer.

Return Value
sprintf returns the numbers of characters written, not including the ter-
minating NUL character.

Example
To format a double at d into buf:

sprintf(buf, “%10f\n”, d);

See Also
printf

Notes
sprintf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of sprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of sprintf, the following conversion
specifiers are invalid: e, E, f, g and G. The L flag is also invalid.

#include <stdio.h>
int sprintf(char *s, @near char fmt, ...)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - sqrt

sqrt

Description

Real square root

Syntax

Function
sqrt computes the square root of x to full double precision.

Return Value
sqrt returns the nearest internal representation to sqrt(x), expressed as a
double floating value. If x is negative, sqrt returns zero.

Example
To use sqrt to check whether n > 2 is a prime number:

if (!(n & 01))
return (NOTPRIME);

sq = sqrt((double)n);
for (div = 3; div <= sq; div += 2)

if (!(n % div))
return (NOTPRIME);

return (PRIME);

Notes
sqrt is packaged in the floating point library.

#include <math.h>
double sqrt(double x)
© 2008 COSMIC Software Using The Compiler 147

C Library - srand

srand

4

148
Description
Seed pseudo-random number generator

Syntax

Function
srand uses nseed as a seed for a new sequence of pseudo-random num-
bers to be returned by subsequent calls to rand. If srand is called with
the same seed value, the sequence of pseudo-random numbers will be
repeated. The initial seed value used by rand and srand is 1.

Return Value
Nothing.

Example
To set up a new sequence of random numbers:

srand(103);

See Also
rand

Notes
srand is packaged in the integer library.

#include <stdlib.h>
void srand(unsigned char nseed)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - strcat

strcat

Description

Concatenate strings

Syntax

Function
strcat appends a copy of the NUL terminated string at s2 to the end of
the NUL terminated string at s1. The first character of s2 overlaps the
NUL at the end of s1. A terminating NUL is always appended to s1.

Return Value
strcat returns s1.

Example
To place the strings “first string, second string” in buf[]:

buf[0] = '\0';
strcpy(buf, “first string”);
strcat(buf, “, second string”);

See Also
strncat

Notes
There is no way to specify the size of the destination area to prevent
storage overwrites.

strcat is packaged in the integer library.

#include <string.h>
char *strcat(char *s1, char *s2)
© 2008 COSMIC Software Using The Compiler 149

C Library - strchr

strchr

4

150
Description
Scan string for first occurrence of character

Syntax

Function
strchr looks for the first occurrence of a specific character c in a NUL
terminated target string s.

Return Value
strchr returns a pointer to the first character that matches c, or NULL if
none does.

Example
To map keystr[] characters into subst[] characters:

if (t = strchr(keystr, *s))
*s = subst[t - keystr];

See Also
memchr, strcspn, strpbrk, strrchr, strspn

Notes
strchr is packaged in the integer library.

#include <string.h>
char *strchr(char *s1, char c)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - strcmp

strcmp

Description

Compare two strings for lexical order

Syntax

Function
strcmp compares two text strings, character by character, for lexical
order in the character collating sequence. The first string starts at s1, the
second at s2. The strings must match, including their terminating NUL
characters, in order for them to be equal.

Return Value
strcmp returns an integer greater than, equal to, or less than zero,
according to whether s1 is lexicographically greater than, equal to, or
less than s2.

Example
To look for the string “include”:

if (strcmp(buf, “include”) == 0)
doinclude();

See Also
memcmp, strncmp

Notes
strcmp is packaged in the integer library.

#include <string.h>
int strcmp(char *s1, char *s2)
© 2008 COSMIC Software Using The Compiler 151

C Library - strcpy

strcpy

4

152
Description
Copy one string to another

Syntax

Function
strcpy copies the NUL terminated string at s2 to the buffer pointed at
by s1. The terminating NUL is also copied.

Return Value
strcpy returns s1.

Example
To make a copy of the string s2 in dest:

strcpy(dest, s2);

See Also
memcpy, strncpy

Notes
There is no way to specify the size of the destination area, to prevent
storage overwrites.

strcpy is packaged in the integer library, and may be implemented as an
inline function.

#include <string.h>
char *strcpy(char *s1, char *s2)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - strcspn

strcspn

Description

Find the end of a span of characters in a set

Syntax

Function
strcspn scans the string starting at s1 for the first occurrence of a char-
acter in the string starting at s2. It computes a subscript i such that:

• s1[i] is a character in the string starting at s1

• s1[i] compares equal to some character in the string starting at s2,
which may be its terminating null character.

Return Value
strcspn returns the lowest possible value of i. s1[i] designates the termi-
nating null character if none of the characters in s1 are in s2.

Example
To find the start of a decimal constant in a text string:

if (!str[i = strcspn(str, “0123456789+-”)])
printf(“can't find number\n”);

See Also
memchr, strchr, strpbrk, strrchr, strspn

Notes
strcspn is packaged in the integer library.

#include <string.h>
unsigned int strcspn(char *s1, char *s2)
© 2008 COSMIC Software Using The Compiler 153

C Library - strlen

strlen

4

154
Description
Find length of a string

Syntax

Function
strlen scans the text string starting at s to determine the number of char-
acters before the terminating NUL.

Return Value
The value returned is the number of characters in the string before the
NUL.

Notes
strlen is packaged in the integer library and may be implemented as an
inline function.

#include <string.h>
unsigned int strlen(char *s)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - strncat

strncat

Description

Concatenate strings of length n

Syntax

Function
strncat appends a copy of the NUL terminated string at s2 to the end of
the NUL terminated string at s1. The first character of s2 overlaps the
NUL at the end of s1. n specifies the maximum number of characters to
be copied, unless the terminating NUL in s2 is encountered first. A ter-
minating NUL is always appended to s1.

Return Value
strncat returns s1.

Example
To concatenate the strings “day” and “light”:

strcpy(s, “day”);
strncat(s + 3, “light”, 5);

See Also
strcat

Notes
strncat is packaged in the integer library.

#include <string.h>
char *strncat(char *s1, char *s2, unsigned char n)
© 2008 COSMIC Software Using The Compiler 155

C Library - strncmp

strncmp

4

156
Description
Compare two n length strings for lexical order

Syntax

Function
strncmp compares two text strings, character by character, for lexical
order in the character collating sequence. The first string starts at s1, the
second at s2. n specifies the maximum number of characters to be com-
pared, unless the terminating NUL in s1 or s2 is encountered first. The
strings must match, including their terminating NUL character, in order
for them to be equal.

Return Value
strncmp returns an integer greater than, equal to, or less than zero,
according to whether s1 is lexicographically greater than, equal to, or
less than s2.

Example
To check for a particular error message:

if (strncmp(errmsg,
“can't write output file”, 23) == 0)
cleanup(errmsg);

See Also
memcmp, strcmp

Notes
strncmp is packaged in the integer library.

#include <string.h>
int strncmp(char *s1, char *s2, unsigned char n)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - strncpy

strncpy

Description

Copy n length string

Syntax

Function
strncpy copies the first n characters starting at location s2 into the
buffer beginning at s1. n specifies the maximum number of characters
to be copied, unless the terminating NUL in s2 is encountered first. In
that case, additional NUL padding is appended to s2 to copy a total of n
characters.

Return Value
strncpy returns s1.

Example
To make a copy of the string s2 in dest:

strncpy(dest, s2, n);

See Also
memcpy, strcpy

Notes
If the string s2 points at is longer than n characters, the result may not
be NUL-terminated.

strncpy is packaged in the integer library.

#include <string.h>
char *strncpy(char *s1, char *s2, unsigned char n)
© 2008 COSMIC Software Using The Compiler 157

C Library - strpbrk

strpbrk

4

158
Description
Find occurrence in string of character in set

Syntax

Function
strpbrk scans the NUL terminated string starting at s1 for the first
occurrence of a character in the NUL terminated set s2.

Return Value
strpbrk returns a pointer to the first character in s1 that is also contained
in the set s2, or a NULL if none does.

Example
To replace unprintable characters (as for a 64 character terminal):

while (string = strpbrk(string, “‘{|}~”))
*string = '@';

See Also
memchr, strchr, strcspn, strrchr, strspn

Notes
strpbrk is packaged in the integer library.

#include <string.h>
char *strpbrk(char *s1, char *s2)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - strrchr

strrchr

Description

Scan string for last occurrence of character

Syntax

Function
strrchr looks for the last occurrence of a specific character c in a NUL
terminated string starting at s.

Return Value
strrchr returns a pointer to the last character that matches c, or NULL if
none does.

Example
To find a filename within a directory pathname:

if (s = strrchr(“/usr/lib/libc.user”, '/')
++s;

See Also
memchr, strchr, strpbrk, strcspn, strspn

Notes
strrchr is packaged in the integer library.

#include <string.h>
char *strrchr(char *s, char c)
© 2008 COSMIC Software Using The Compiler 159

C Library - strspn

strspn

4

160
Description
Find the end of a span of characters not in set

Syntax

Function
strspn scans the string starting at s1 for the first occurrence of a charac-
ter not in the string starting at s2. It computes a subscript i such that

• s1[i] is a character in the string starting at s1

• s1[i] compares equal to no character in the string starting at s2,
except possibly its terminating null character.

Return Value
strspn returns the lowest possible value of i. s1[i] designates the termi-
nating null character if all of the characters in s1 are in s2.

Example
To check a string for characters other than decimal digits:

if (str[strspn(str, “0123456789”)])
printf(“invalid number\n”);

See Also
memchr, strcspn, strchr, strpbrk, strrchr

Notes
strspn is packaged in the integer library.

#include <string.h>
unsigned int strspn(char *s1, char *s2)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - strstr

strstr

Description

Scan string for first occurrence of string

Syntax

Function
strstr looks for the first occurrence of a specific string s2 not including
its terminating NUL, in a NUL terminated target string s1.

Return Value
strstr returns a pointer to the first character that matches c, or NULL if
none does.

Example
To look for a keyword in a string:

if (t = strstr(buf, “LIST”))
do_list(t);

See Also
memchr, strcspn, strpbrk, strrchr, strspn

Notes
strstr is packaged in the integer library.

#include <string.h>
char *strstr(char *s1, char *s2)
© 2008 COSMIC Software Using The Compiler 161

C Library - strtod

strtod

4

162
Description
Convert buffer to double

Syntax

Function
strtod converts the string at nptr into a double. The string is taken as
the text representation of a decimal number, with an optional fraction
and exponent. Leading whitespace is skipped and an optional sign is
permitted; conversion stops on the first unrecognizable character.
Acceptable inputs match the pattern:

[+|-]d*[.d*][e[+|-]dd*]

where d is any decimal digit and e is the character ‘e’ or ‘E’. If endptr is
not a null pointer, *endptr is set to the address of the first unconverted
character remaining in the string nptr. No checks are made against over-
flow, underflow, or invalid character strings.

Return Value
strtod returns the converted double value. If the string has no recogniz-
able characters, it returns zero.

Example
To read a string from STDIN and convert it to a double at d:

gets(buf);
d = strtod(buf, NULL);

See Also
atoi, atol, strtol, strtoul

Notes
strtod is packaged in the floating point library.

#include <stdlib.h>
double strtod(char *nptr, char **endptr)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - strtol

strtol

Description

Convert buffer to long

Syntax

Function
strtol converts the string at nptr into a long integer. Leading whitespace
is skipped and an optional sign is permitted; conversion stops on the
first unrecognizable character. If base is not zero, characters a-z or A-Z
represents digits in range 10-36. If base is zero, a leading “0x” or “0X”
in the string indicates hexadecimal, a leading “0” indicates octal, other-
wise the string is take as a decimal representation. If base is 16 and a
leading “0x” or “0X” is present, it is skipped before to convert. If
endptr is not a null pointer, *endptr is set to the address of the first
unconverted character in the string nptr.

No checks are made against overflow or invalid character strings.

Return Value
strtol returns the converted long integer. If the string has no recogniza-
ble characters, zero is returned.

Example
To read a string from STDIN and convert it to a long l:

gets(buf);
l = strtol(buf, NULL, 0);

See Also
atof, atoi, strtoul, strtod

Notes
strtol is packaged in the integer library.

#include <stdlib.h>
long strtol(char *nptr, char **endptr, char base)
© 2008 COSMIC Software Using The Compiler 163

C Library - strtoul

strtoul

4

164
Description
Convert buffer to unsigned long

Syntax

Function
strtoul converts the string at nptr into a long integer. Leading
whitespace is skipped and an optional sign is permitted; conversion
stops on the first unrecognizable character. If base is not zero, charac-
ters a-z or A-Z represents digits in range 10-36. If base is zero, a lead-
ing “0x” or “0X” in the string indicates hexadecimal, a leading “0”
indicates octal, otherwise the string is take as a decimal representation.
If base is 16 and a leading “0x” or “0X” is present, it is skipped before
to convert. If endptr is not a null pointer, *endptr is set to the address of
the first unconverted character in the string nptr.

No checks are made against overflow or invalid character strings.

Return Value
strtoul returns the converted long integer. If the string has no recogniza-
ble characters, zero is returned.

Example
To read a string from STDIN and convert it to a long l:

gets(buf);
l = strtoul(buf, NULL, 0);

See Also
atof, atoi, strtol, strtod

Notes
strtoul is a macro redefined to strtol.

#include <stdlib.h>
unsigned long strtoul(char *nptr, char **endptr,

char base)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - tan

tan

Description

Tangent

Syntax

Function
tan computes the tangent of x, expressed in radians, to full double pre-
cision.

Return Value
tan returns the nearest internal representation to tan(x), in the range
[-pi/2, pi/2], expressed as a double floating value. If the number in x is
too large to be represented, tan returns zero. An argument with a large
size may return a meaningless value, i.e. when x/(2 * pi) has no fraction
bits.

Example
To compute the tangent of theta:

y = tan(theta);

See Also
cos, sin

Notes
tan is packaged in the floating point library.

#include <math.h>
double tan(double x)
© 2008 COSMIC Software Using The Compiler 165

C Library - tanh

tanh

4

166
Description
Hyperbolic tangent

Syntax

Function
tanh computes the value of the hyperbolic tangent of x to double preci-
sion.

Return Value
tanh returns the nearest internal representation to tanh(x), expressed as
a double floating value. If the result is too large to be properly repre-
sented, tanh returns zero.

Example
To compute the hyperbolic tangent of x:

y = tanh(x);

See Also
cosh, exp, sinh

Notes
tanh is packaged in the floating point library.

#include <math.h>
double tanh(double x)
© 2008 COSMIC SoftwareUsing The Compiler

C Library - tolower

tolower

Description

Convert character to lowercase if necessary

Syntax

Function
tolower converts an uppercase letter to its lowercase equivalent, leav-
ing all other characters unmodified.

Return Value
tolower returns the corresponding lowercase letter, or the unchanged
character.

Example
To accumulate a hexadecimal digit:

for (sum = 0; isxdigit(*s); ++s)
if (isdigit(*s)

sum = sum * 16 + *s - '0';
else

sum = sum * 16 + tolower(*s) + (10 - 'a');

See Also
toupper

Notes
tolower is packaged in the integer library.

#include <ctype.h>
int tolower(char c)
© 2008 COSMIC Software Using The Compiler 167

C Library - toupper

toupper

4

168
Description
Convert character to uppercase if necessary

Syntax

Function
toupper converts a lowercase letter to its uppercase equivalent, leaving
all other characters unmodified.

Return Value
toupper returns the corresponding uppercase letter, or the unchanged
character.

Example
To convert a character string to uppercase letters:

for (i = 0; i < size; ++i)
buf[i] = toupper(buf[i]);

See Also
tolower

Notes
toupper is packaged in the integer library.

#include <ctype.h>
int toupper(char c)
© 2008 COSMIC SoftwareUsing The Compiler

CHAPTER

5

Using The Assembler
The castm8 cross assembler translates your assembly language source
files into relocatable object files. The C cross compiler calls castm8 to
assemble your code automatically, unless specified otherwise. castm8
generates also listings if requested. This chapter includes the following
sections:

• Invoking castm8

• Object File

• Listings

• Assembly Language Syntax

• Branch Optimization

• Old Syntax

• C Style Directives

• Assembler Directives
© 2008 COSMIC Software Using The Assembler 169

Invoking castm85

170
Invoking castm8
castm8 accepts the following command line options, each of which is
described in detail below:

Castm8 Option Usage

Option Description

-a map all sections to absolute, including the predefined ones.

-b do not optimize branch instructions. By default, the assem-
bler replaces long branches by short branches wherever a
shorter instruction can be used, and short branches by long
branches wherever the displacement is too large. This opti-
mization also applies to jump and jump to subroutines
instructions.

castm8 [options] <files>
-a absolute assembler
-b do not optimizes branches
-c output cross reference
-d*> define symbol=value
+e* error file name
-ff use formfeed in listing
-ft force title in listing
-f# fill byte value
-h* include header
-i*> include path
-l output listing
+l* listing file name
-m accept old syntax
-mi accept label syntax
-o* output file name
-pe all equates public
-p all symbols public
-pl keep local symbol
-u undefined in listing
-v be verbose
-x include line debug info
-xp no path in debug info
-xx include full debug info
© 2008 COSMIC SoftwareUsing The Assembler

Invoking castm8
-c produce cross-reference information. The cross-reference
information will be added at the end of the listing file. This
option enforces the -l option.

-d*> where * has the form name=value, defines name to have
the value specified by value. This option is equivalent to
using an equ directive in each of the source files.

+e* log errors from assembler in the text file * instead of display-
ing the messages on the terminal screen.

-ff use formfeed character to skip pages in listing instead of
using blank lines.

-ft output a title in listing (date, file name, page). By default, no
title is output.

-f# define the value of the filling byte used to fill any gap cre-
ated by the assembler directives. Default is 0.

-h* include the file specified by * before starting assembly. It is
equivalent to an include directive in each source file.

-i*> define a path to be used by the include directive. Up to 20
paths can be defined. A path is a directory name and is not
ended by any directory separator character.

-l create a listing file. The name of the listing file is derived
from the input file name by replacing the suffix by the ‘.ls’
extension, unless the +l option has been specified.

+l* create a listing file in the text file *. If both -l and +l are spec-
ified, the listing file name is given by the +l option.

-m accept the old syntax.

-mi accept label that is not ended with a ‘:’ character.

-o* write object code to the file *. If no file name is specified, the
output file name is derived from the input file name, by
replacing the rightmost extension in the input file name with
the character ‘o’. For example, if the input file name is
prog.s, the default output file name is prog.o.

Castm8 Option Usage (cont.)

Option Description
© 2008 COSMIC Software Using The Assembler 171

Object File5

172
Each source file specified by <files> will be assembled separately, and
will produce separate object and listing files. For each source file, if no
errors are detected, castm8 generates an object file. If requested by the -
l or -c options, castm8 generates a listing file even if errors are detected.
Such lines are followed by an error message in the listing.

Object File
The object file produced by the assembler is a relocatable object in a
format suitable for the linker clnk. This will normally consist of
machine code, initialized data and relocation information. The object
file also contains information about the sections used, a symbol table,
and a debug symbol table.

-pe mark all symbols defined by an equ directive as public.
This option has the same effect than adding a xdef directive
for each of those symbols.

-pl put locals in the symbol table. They are not published as
externals and will be only displayed in the linker map file.

-p mark all defined symbols as public. This option has the
same effect than adding a xdef directive for each label.

-u produce an error message in the listing file for all occur-
rence of an undefined symbol. This option enforces the -l
option.

-v display the name of each file which is processed.

-x add line debug information to the object file.

-xp do not prefix filenames in the debug information with any
absolute path name. Debuggers will have to be informed
about the actual files location.

-xx add debug information in the object file for any label defin-
ing code or data. This option disables the -p option as only
public or used labels are selected.

Castm8 Option Usage (cont.)

Option Description
© 2008 COSMIC SoftwareUsing The Assembler

Listings
Listings
The listing stream contains the source code used as input to the assem-
bler, together with the hexadecimal representation of the corresponding
object code and the address for which it was generated. The contents of
the listing stream depends on the occurrence of the list, nolist, clist,
dlist and mlist directives in the source. The format of the output is as
follows:

<address> <generated_code> <source_line>

where <address> is the hexadecimal relocatable address where the
<source_line> has been assembled, <generated_code> is the hexadec-
imal representation of the object code generated by the assembler and
<source_line> is the original source line input to the assembler. If
expansion of data, macros and included files is not enabled, the
<generated_code> print will not contain a complete listing of all gen-
erated code.

Addresses in the listing output are the offsets from the start of the cur-
rent section. After the linker has been executed, the listing files may be
updated to contain absolute information by the clabs utility. Addresses
and code will be updated to reflect the actual values as built by the
linker.

Several directives are available to modify the listing display, such as
title for the page header, plen for the page length, page for starting a
new page, tabs for the tabulation characters expansion. By default, the
listing file is not paginated. Pagination is enabled by using at least one
title directive in the source file, or by specifying the -ft option on the
command line. Otherwise, the plen and page directives are simply
ignored. Some other directives such as clist, mlist or dlist control the
amount of information produced in the listing.

A cross-reference table will be appended to the listing if the -c option
has been specified. This table gives for each symbol its value, its
attributes, the line number of the line where it has been defined, and the
list of line numbers where it is referenced.
© 2008 COSMIC Software Using The Assembler 173

Assembly Language Syntax5

174
Assembly Language Syntax
The assembler castm8 conforms to the STM8 syntax as described in the
document Assembly Language Input Standard. The assembly language
consists of lines of text in the form:

[label:] [command [operands]] [; comment]
or

; comment

where ‘:’ indicates the end of a label and ‘;’ defines the start of a com-
ment. The end of a line terminates a comment. The command field may
be an instruction, a directive or a macro call.

Instruction mnemonics and assembler directives may be written in
upper or lower case. The C compiler generates lowercase assembly lan-
guage.

A source file must end with the end directive. All the following lines
will be ignored by the assembler. If an end directive is found in an
included file, it stops only the process for the included file.

Instructions
castm8 recognizes the following instructions:

adc ccf incw jrnh ldf rim sra
add clr iret jrnm ldw rlc sraw
addw clrw jp jrnv mov rlcw srl
and cp jpf jrpl mul rlwa srlw
bccm cpl jra jrsge neg rrc sub
bcp cplw jrc jrsgt negw rrcw subw
bcpl cpw jreq jrsle nop rrwa swap
bkpt dec jrf jrslt or rvf swapw
bres decw jrh jrt pop sbc tnz
bset div jrih jruge popw scf tnzw
btjf divw jril jrugt push sim trap
btjt exg jrm jrule pushw sla wfe
call exgw jrmi jrult rcf slaw wfi
callf halt jrnc jrv ret sll xor
callr inc jrne ld retf sllw
© 2008 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
The operand field of an instruction uses an addressing mode to
describe the instruction argument. The following examples demonstrate
the accepted syntax:

rcf ; implicit
push y ; register
ld a,#1 ; immediate
and a,var ; short, long
ld a,(2,x) ; indexed
ld a,[var] ; indirect
ld a,([var.w],y) ; indirect indexed long
jrne loop ; relative
bset 2,#1 ; bit number
btjt 2,#1,loop ; bit test and branch

The assembler chooses the smallest addressing mode where several
solutions are possible. Short addressing mode is selected when using a
label defined in the .bsct section.

For an exact description of the above instructions, refer to the ST
Microelectronics’s STM8 Family Programming Manual.

Labels
A source line may begin with a label. Some directives require a label on
the same line, otherwise this field is optional. A label must begin with
an alphabetic character, the underscore character ‘_’ or the period char-
acter ‘.’. It is continued by alphabetic (A-Z or a-z) or numeric (0-9)
characters, underscores, dollar signs ($) or periods. Labels are case sen-
sitive. The processor register names ‘a’ and ‘x’ are reserved and cannot
be used as labels.

data1: dc.b $56
c_x: ds.b 1

When a label is used within a macro, it may be expanded more than
once and in that case, the assembler will fail with a multiply defined
symbol error. In order to avoid that problem, the special sequence ‘\@’
may be used as a label prefix. This sequence will be replaced by a
unique sequence for each macro expansion. This prefix is only allowed
inside a macro definition.
© 2008 COSMIC Software Using The Assembler 175

Assembly Language Syntax5

176
wait: macro
\@loop:btjf PORTA,#1,\@loop

endm

Temporary Labels
The assembler allows temporary labels to be defined when there is no
need to give them an explicit name. Such a label is composed by a dec-
imal number immediately followed by a ‘$’ character. Such a label is
valid until the next standard label or the local directive. Then the same
temporary label may be redefined without getting a multiply defined
error message.

1$: dec
jrne 1$

2$: dec
jrne 2$

Temporary labels do not appear in the symbol table or the cross refer-
ence list.

For example, to define 3 different local blocks and create and use 3 dif-
ferent local labels named 10$:

function1:
10$: ld a,var

jreq 10$
ld a,var2
local

10$: ld a,var2
jreq 10$
ld a,var
ret

function2:
10$: ld a,var2

sub a,var
jrne 10$
ret

Constants
The assembler accepts numeric constants and string constants.
Numeric constants are expressed in different bases depending on a pre-
fix character as follows:
© 2008 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
The assembler also accepts numerics constants in different bases
depending on a suffix character as follow:

The suffix letter can be entered uppercase or lowercase. Hexadecimal
numbers still need to start with a digit.

String constants are a series of printable characters between single or
double quote characters:

‘This is a string’
“This is also a string”

Depending on the context, a string constant will be seen either as a
series of bytes, for a data initialization, or as a numeric; in which case,
the string constant should be reduced to only one character.

hexa: dc.b ‘0123456789ABCDEF’
start: cp x,#’A’ ; ASCII value of ‘A’

Number Base

10 decimal (no prefix)

%1010 binary

@12 octal

$A hexadecimal

Suffix Base

D, d or none decimal (no prefix)

B or b binary

Q or q octal

0AH or 0Ah hexadecimal
© 2008 COSMIC Software Using The Assembler 177

Assembly Language Syntax5

178
Expressions
An expression consists of a number of labels and constants connected
together by operators. Expressions are evaluated to 32-bit precision.
Note that operators have the same precedence than in the C language.

A special label written ‘*’ is used to represent the current location
address. Note that when ‘*’ is used as the operand of an instruction, it
has the value of the program counter before code generation for that
instruction. The set of accepted operators is:

+ addition
- subtraction (negation)
* multiplication
/ division
% remainder (modulus)
& bitwise and
| bitwise or
^ bitwise exclusive or
~ bitwise complement
<< left shift
>> right shift
== equality
!= difference
< less than
<= less than or equal
> greater than
>= greater than or equal
&& logical and
|| logical or
! logical complement

These operators may be applied to constants without restrictions, but
are restricted when applied to relocatable labels. For those labels, the
addition and substraction operators only are accepted and only in the
following cases:

label + constant
label - constant
label1 - label2

The difference of two relocatable labels is valid only if both symbols are
not external symbols, and are defined in the same section.

NOTE
© 2008 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
An expression may also be constructed with a special operator. These
expressions cannot be used with the previous operators and have to be
specified alone.

high(expression) upper byte
low(expression) lower byte
page(expression) page byte

These special operators evaluate an expression and extract the appro-
priate information from the result. The expression may be relocatable,
and may use the set of operators if allowed.

high - extract the upper byte of the 16-bit expression

low - extract the lower byte of the 16-bit expression

page - extract the page value of the expression. It is computed by the
linker according to the -bs option used. This is used to get the address
extension when bank switching is used.

Macro Instructions
A macro instruction is a list of assembler commands collected under a
unique name. This name becomes a new command for the following of
the program. A macro begins with a macro directive and ends with a
endm directive. All the lines between these two directives are recorded
and associated with the macro name specified with the macro directive.

signex:macro ; sign extension
clr x ; prepare MSB
tnz a ; test sign
jrpl \@pos ; if not positive
cpl x ; invert MSB

\@pos:
endm ; end of macro

This macro is named signex and contains the code needed to perform a
sign extension of a into x. Whenever needed, this macro can be
expanded just by using its name in place of a standard instruction:

ld a,char+1; load LSB
signex ; expand macro
ld char,x ; store result
© 2008 COSMIC Software Using The Assembler 179

Assembly Language Syntax5

180
The resulting code will be the same as if the following code had been
written:

ld a,char+1; load LSB
clr x ; prepare MSB
tnz a ; test sign
jrpl pos ; if not positive
cpl x ; invert MSB

pos:
ld char,x ; store result

A macro may have up to 35 parameters. A parameter is written \1,
\2,... \9, \A,...,\Z inside the macro body and refers explicitly to the first,
second,... ninth argument and \A to \Z to denote the tenth to 35th oper-
and on the invocation line, which are placed after the macro name, and
separated by commas. Each argument replaces each occurrence of its
corresponding parameter. An argument may be expressed as a string
constant if it contains a comma character.

A macro can also handle named arguments instead of numbered argu-
ment. In such a case, the macro directive is followed by a list of argu-
ment named, each prefixed by a \ character, and separated by commas.
Inside the macro body, arguments will be specified using the same syn-
tax or a sequence starting by a \ character followed by the argument
named placed between parenthesis. This alternate syntax is useful to
catenate the argument with a text string immediately starting with
alphanumeric characters.

The special parameter \# is replaced by a numeric value corresponding
to the number of arguments actually found on the invocation line.

In order to operate directly in memory, the previous macro may have
been written using the numbered syntax:

signex:macro ; sign extension
clr x ; prepare MSB
ld a,\1 ; load LSB
jrpl \@pos ; if not positive
cpl x ; invert MSB

\@pos:
ld \1,x ; store MSB
endm ; end of macro
© 2008 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
And called:

signex char ; sign extend char

This macro may also be written using the named syntax:

signex:macro \value ; sign extension
clr x ; prepare MSB
ld a,\value ; load LSB
jrpl \@pos ; if not positive
cpl x ; invert MSB

\@pos:
ld \(value),x ; store MSB
endm ; end of macro

The form of a macro call is:

The special parameter \0 corresponds to an extension <ext> which may
follow the macro name, separated by the period character ‘.’. An exten-
sion is a single letter which may represent the size of the operands and
the result. For example:

table: macro
dc.\0 1,2,3,4
endm

When invoking the macro:

table.b

will generate a table of byte:

dc.b 1,2,3,4

When invoking the macro:

table.w

will generate a table of word:

dc.w 1,2,3,4

 name>[.<ext>] [<arguments>]
© 2008 COSMIC Software Using The Assembler 181

Assembly Language Syntax5

182
The special parameter * is replaced by a sequence containing the list of
all the passed arguments separated by commas. This syntax is useful to
pass all the macro arguments to another macro or a repeatl directive.

The directive mexit may be used at any time to stop the macro expan-
sion. It is generally used in conjunction with a conditional directive.

A macro call may be used within another macro definition, all macros
must then be defined before their first call. A macro definition cannot
contain another macro definition.

If a listing is produced, the macro expansion lines are printed if enabled
by the mlist directive. If enabled, the invocation line is not printed, and
all the expanded lines are printed with all the parameters replaced by
their corresponding arguments. Otherwise, the invocation line only is
printed.

Conditional Directives
A conditional directive allows parts of the program to be assembled or
not depending on a specific condition expressed in an if directive. The
condition is an expression following the if command. The expression
cannot be relocatable, and shall evaluate to a numeric result. If the con-
dition is false (expression evaluated to zero), the lines following the if
directive are skipped until an endif or else directive. Otherwise, the
lines are normally assembled. If an else directive is encountered, the
condition status is reversed, and the conditional process continues until
the next endif directive.

if debug == 1
ld x,#message
call print
endif

If the symbol debug is equal to 1, the next two lines are assembled.
Otherwise they are skipped.

if offset != 1 ; if offset too large
addptr offset ; call a macro
else ; otherwise
inc x ; increment X register
endif
© 2008 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
If the symbol offset is not one, the macro addptr is expanded with off-
set as argument, otherwise the aix instruction is directly assembled.

Conditional directives may be nested. An else directive refers to the
closest previous if directive, and an endif directive refers to the closest
previous if or else directive.

If a listing is produced, the skipped lines are printed only if enabled by
the clist directive. Otherwise, only the assembled lines are printed.

Sections
The assembler allows code and data to be splitted in sections. A section
is a set of code or data referenced by a section name, and providing a
contiguous block of relocatable information. A section is defined with a
section directive, which creates a new section and redirects the follow-
ing code and data thereto. The directive switch can be used to redirect
the following code and data to another section.

data: section ; defines data section
text: section ; defines text section
start:

ld x,#value; fills text section
jp print
switch data ; use now data section

value:
dc.b 1,2,3 ; fills data section

The assembler allows up to 255 different sections. A section name is
limited to 15 characters. If a section name is too long, it is simply trun-
cated without any error message.

The assembler predefines the following sections, meaning that a section
directive is not needed before to use them:
© 2008 COSMIC Software Using The Assembler 183

Assembly Language Syntax5

184
The sections .bsct and .ubsct are used for locating data in the zero page
of the processor. The zero page is defined as the memory addresses
between 0x00 and 0xFF inclusive, i.e. the memory directly addressable
by a single byte. Several processors include special instructions and/or
addressing modes that take advantage of this special address range. The
Cosmic assembler will automatically use the most efficient addressing
mode if the data objects are allocated in the .bsct, .ubsct or a section
with the same attributes. If zero page data objects are defined in another
file then the directive xref.b must be used to externally reference the
data object. This directive specifies that the address for these data
object is only one byte and therefore the assembler may use 8 bit
addressing modes.

switch .bsct
zvar2: ds.b 1

switch .bss
var2: ds.b 1

switch .text
ld a,var
ld a,zvar
ld a,var2
ld a,var2
end

Bit Handling
The assembler allows symbols specifying bit addresses instead of byte
addresses. A bit address is obtained from a byte address and a bit
number by or’ing the bit number with the byte address 3-bit shifted to
the left. Such symbol can be defined either by an equate definition or as
member of a bit section. Such a section can be defined by using the sec-

Section Description

.text executable code

.data initialized data

.bss uninitialized data

.bsct initialized data in zero page

.ubsct non initialized data in zero page
© 2008 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
tion directive with the bit attribute. In a bit section, any directive creat-
ing or reserving bytes can be used, but will create or reserve bits. Bit
symbols can be directly used by the bit instructions with a shortened
syntax, as a bit symbol is defining both a byte and a bit in this byte. Bit
symbols can be declared as external by using the xbit directive. Exter-
nal definitions for bit symbols located in the zero page will used the
xbit.b directive.

xbit.b b1 ; external bit declaration
PA3: equ PORTA:3 ; bit 3 of byte PORTA
.bit: section zpage,bit; create bit section named “.bit”
b0: ds.b 1 ; allocates one bit

switch .text
btjf PA3,skip; use directly bit symbol
bset b0 ; with bit instructions

skip:
bres b1

Bit sections are located at link time either at specified bit addresses or
attached to any zero page section. The linker is computing the proper
addresses when hooking bit sections to byte sections, or byte sections to
bit sections.

Includes
The include directive specifies a file to be included and assembled in
place of the include directive. The file name is written between double
quotes, and may be any character string describing a file on the host
system. If the file cannot be found using the given name, it is searched
from all the include paths defined by the -i options on the command
line, and from the paths defined by the environment symbol CXLIB, if
such a symbol has been defined before the assembler invocation. This
symbol may contain several paths separated by the usual path separator
of the host operating system (‘;’ for MSDOS and ‘:’ for UNIX).

The -h option can specify a file to be “included”. The file specified will
be included as if the program had an include directive at its very top.
The specified file will be included before any source file specified on
the command line.
© 2008 COSMIC Software Using The Assembler 185

Branch Optimization5

186
Branch Optimization
Branch instructions are by default automatically optimized to produce
the shortest code possible. This behaviour may be disabled by the -b
option. This optimization operates on conditional branches, on jumps
and jumps to subroutine.

A conditional branch offset is limited to the range [-128,127]. If such an
instruction cannot be encoded properly, the assembler will replace it by
a sequence containing an inverted branch to the next location followed
immediately by a jump to the original target address. The assembler
keep track of the last replacement for each label, so if a long branch has
already been expanded for the same label at a location close enough
from the current instruction, the target address of the short branch will
be changed only to branch on the already existing jump instruction to
the specified label.

jreq farlabel becomes jrne *+5
jp farlabel

Note that a jra instruction will be replaced by a single jp instruction if it
cannot be encoded as a relative branch.

A jp or call instruction will be replaced by a jra or callr instruction if
the destination address is in the same section than the current one, and if
the displacement is in the range allowed by a relative branch.

Old Syntax
The -m option allows the assembler to accept old constructs which are
now obsolete. The following features are added to the standard behav-
iour:

• a comment line may begin with a ‘*’ character;

• a label starting in the first column does not need to be ended with
a ‘:’ character;

• no error message is issued if an operand of the dc.b directive is
too large;

• the section directive handles numbered sections;
© 2008 COSMIC SoftwareUsing The Assembler

C Style Directives
The comment separator at the end of an instruction is still the ‘;’ charac-
ter because the ‘*’ character is interpreted as the multiply operator.

C Style Directives
The assembler also supports C style directives matching the preproces-
sor directives of a C compiler. The following directives list shows the
equivalence with the standard directives:

Assembler Directives
This section consists of quick reference descriptions for each of the
castm8 assembler directives.

C Style Assembler Style

#include “file” include “file”

#define label expression label: equ expression

#define label label: equ 1

#if expression if expression

#ifdef label ifdef label

#ifndef label ifndef label

#else else

#endif endif

#error “message” fail “message”

The #define directive does not implement all the text replacement fea-
tures provided by a C compiler. It can be used only to define a symbol
equal to a numerical value.

NOTE
© 2008 COSMIC Software Using The Assembler 187

Assembler Directives - align

align

5

188
Description
Align the next instruction on a given boundary

Syntax

Function
The align directive forces the next instruction to start on a specific
boundary. The align directive is followed by a constant expression
which must be positive. The next instruction will start at the next
address which is a multiple of the specified value. If bytes are added in
the section, they are set to the value of the filling byte defined by the -f
option. If <fill_value> is specified, it will be used locally as the filling
byte, instead of the one specified by the -f option.

Example
align 3 ; next address is multiple of 3
ds.b 1

See Also
even

align <expression>,[<fill_value>]
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - base

base

Description

Define the default base for numerical constants

Syntax

Function
The base directive sets the default base for numerical constants begin-
ning with a digit. The base directive is followed by a constant expres-
sion which value must be one of 2, 8, 10 or 16. The decimal base is used
by default. When another base is selected, it is no more possible to enter
decimal constants.

Example
base 8 ; select octal base
ld a,#377 ; load $FF

base <expression>
© 2008 COSMIC Software Using The Assembler 189

Assembler Directives - bsct

bsct

5

190
Description
Switch to the predefined .bsct section.

Syntax

Function
The bsct directive switches input to a section named .bsct, also known
as the zero page section. The assembler will automatically select the
short addressing mode when referencing an object defined in the .bsct
section.

Example
bsct

c_x:
ds.b 1

Notes
The .bsct section is limited to 256 bytes, but the assembler does not
check the .bsct section size. This will be done by the linker.

See Also
section, switch

bsct
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - clist

clist

Description

Turn listing of conditionally excluded code on or off.

Syntax

Function
The clist directive controls the output in the listing file of conditionally
excluded code. It is effective if and only if listings are requested; it is
ignored otherwise.

The parts of the program to be listed are the program lines which are not
assembled as a consequence of if, else and endif directives.

See Also
if, else, endif

clist [on|off]
© 2008 COSMIC Software Using The Assembler 191

Assembler Directives - dc

dc

5

192
Description
Allocate constant(s)

Syntax

Function
The dc directive allocates and initializes storage for constants. If
<expression> is a string constant, one byte is allocated for each charac-
ter of the string. Initialization can be specified for each item by giving a
series of values separated by commas or by using a repeat count.

The dc and dc.b directives will allocate one byte per <expression>.

The dc.w directive will allocate one word per <expression>.

The dc.l directive will allocate one long word per <expression>.

Example
digit: dc.b 10,'0123456789'

dc.w digit

Note
For compatibility with previous assemblers, the directive fcb is alias to
dc.b, and the directive fdb is alias to dc.w.

dc[.size] <expression>[,<expression>...]
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - dcb

dcb

Description

Allocate constant block

Syntax

Function
The dcb directive allocates a memory block and initializes storage for
constants. The size area is the number of the specified value <count> of
<size>. The memory area can be initialized with the <value> specified.

The dcb and dcb.b directives will allocate one byte per <count>.

The dcb.w directive will allocate one word per <count>.

The dcb.l directive will allocate one long word per <count>.

Example
digit: dcb.b 10,5 ; allocate 10 bytes,

; all initialized to 5

dcb.<size> <count>,<value>
© 2008 COSMIC Software Using The Assembler 193

Assembler Directives - dlist

dlist

5

194
Description
Turn listing of debug directives on or off.

Syntax

Function
The dlist directive controls the visibility of any debug directives in the
listing. It is effective if and only if listings are requested; it is ignored
otherwise.

dlist [on|off]
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - ds

ds

Description

Allocate variable(s)

Syntax

Function
The ds directive allocates storage space for variables. <space> must be
an absolute expression. Bytes created are set to the value of the filling
byte defined by the -f option.

The ds and ds.b directives will allocate <space> bytes.

The ds.w directive will allocate <space> words.

The ds.l directive will allocate <space> long words.

Example
ptlec: ds.b 2
ptecr: ds.b 2
chrbuf: ds.w 128

Note
For compatibility with previous assemblers, the directive rmb is alias
to ds.b.

ds[.size] <space>
© 2008 COSMIC Software Using The Assembler 195

Assembler Directives - else

else

5

196
Description
Conditional assembly

Syntax

Function
The else directive follows an if directive to define an alternative condi-
tional sequence. It reverts the condition status for the following instruc-
tions up to the next matching endif directive. An else directive applies
to the closest previous if directive.

Example
if offset != 1 ; if offset too large
addptr offset ; call a macro
else ; otherwise
inc x ; increment X register
endif

Note
The else and elsec directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
if, endif, clist

if <expression>
instructions
else
instructions
endc
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - elsec

elsec

Description

Conditional assembly

Syntax

Function
The elsec directive follows an if directive to define an alternative condi-
tional sequence. It reverts the condition status for the following instruc-
tions up to the next matching endc directive. An elsec directive applies
to the closest previous if directive.

Example
ifge offset-127 ; if offset too large
addptr offset ; call a macro
elsec ; otherwise
inc x ; increment X register
endc

Note
The elsec and else directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
if, endc, clist, else

if <expression>
instructions
elsec
instructions
endc
© 2008 COSMIC Software Using The Assembler 197

Assembler Directives - end

end

5

198
Description
Stop the assembly

Syntax

Function
The end directive stops the assembly process. Any statements follow-
ing it are ignored. If the end directive is encountered in an included file,
it will stop the assembly process for the included file only.

end
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - endc

endc

Description

End conditional assembly

Syntax

Function
The endc directive closes an if<cc> or elsec conditional directive. The
conditional status reverts to the one existing before entering the if<cc>
directives. The endc directive applies to the closest previous if<cc> or
elsec directive.

Example
ifge offset-127 ; if offset too large
addptr offset ; call a macro
elsec ; otherwise
inc x ; increment X register
endc

Note
The endc and endif directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
 if<cc>, elsec, clist, end

if<cc> <expression>
instructions
endc
© 2008 COSMIC Software Using The Assembler 199

Assembler Directives - endif

endif

5

200
Description
End conditional assembly

Syntax

Function
The endif directive closes an if, or else conditional directive. The con-
ditional status reverts to the one existing before entering the if directive.
The endif directive applies to the closest previous if or else directive.

Example
if offset != 1 ; if offset too large
addptr offset ; call a macro
else ; otherwise
inc x ; increment X register
endif

Note
The endif and endc directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
 if, else, clist

if <expression>
instructions
endif
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - endm

endm

Description

End macro definition

Syntax

Function
The endm directive is used to terminate macro definitions.

Example
; define a macro that places the length of
; a string in a byte prior to the string

ltext: macro
ds.b \@2 - \@1

\@1:
ds.b \1

\@2:
endm

See Also
mexit, macro

label: macro
 <macro_body>
 endm
© 2008 COSMIC Software Using The Assembler 201

Assembler Directives - endr

endr

5

202
Description
End repeat section

Syntax

Function
The endr directive is used to terminate repeat sections.

Example
; shift a value n times
asln: macro

repeat \1
sla
endr
endm

; use of above macro
asln 10 ;shift 10 times

See Also
repeat, repeatl, rexit

repeat
<repeat_body>
endr
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - equ

equ

Description

Give a permanent value to a symbol

Syntax

Function
The equ directive is used to associate a permanent value to a symbol
(label). Symbols declared with the equ directive may not subsequently
have their value altered otherwise the set directive should be used.
<expression> must be either a constant expression, or a relocatable
expression involving a symbol declared in the same section as the cur-
rent one.

The equ directive can also be used to define a bit symbol by suffixing
the defining expression with an absolute bit number. The expression
and the bit number are separated by a colon character ‘:’. The expres-
sion can be absolute or relocatable.

Example
false: equ 0 ; initialize these values
true: equ 1
tablen: equ tabfin - tabsta ;compute table length
nul: equ $0 ;define strings for ascii characters
soh: equ $1
stx: equ $2
etx: equ $3
eot: equ $4
enq: equ $5

PORTB: equ $1
PB2: equ PORTB:2

See Also
lit, set

label: equ <expression>
© 2008 COSMIC Software Using The Assembler 203

Assembler Directives - even

even

5

204
Description
Assemble next byte at the next even address relative to the start of a
section.

Syntax

Function
The even directive forces the next assembled byte to the next even
address. If a byte is added to the section, it is set to the value of the fill-
ing byte defined by the -f option. If <fill_value> is specified, it will be
used locally as the filling byte, instead of the one specified by the -f
option.

Example
vowtab: dc.b 'aeiou'

 even ; ensure aligned at even address
tentab: dc.w 1, 10, 100, 1000

even [fill_<value>]
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - fail

fail

Description

Generate error message.

Syntax

Function
The fail directive outputs “string” as an error message. No output file is
produced as this directive creates an assembly error. fail is generally
used with conditional directives.

Example
Max: equ 512

ifge value - Max
fail “Value too large”

fail "string"
© 2008 COSMIC Software Using The Assembler 205

Assembler Directives - if

if

5

206
Description
Conditional assembly

Syntax

Function
The if, else and endif directives allow conditional assembly. The if
directive is followed by a constant expression. If the result of the
expression is not zero, the following instructions are assembled up to
the next matching endif or else directive; otherwise, the following
instructions up to the next matching endif or else directive are skipped.

If the if statement ends with an else directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endif. So, if the if expression was not zero, the
instructions between else and endif are skipped; otherwise, the instruc-
tions between else and endif are assembled. An else directive applies to
the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
if offset != 1 ; if offset too large
addptr offset ; call a macro
else ; otherwise
inc x ; increment X register
endif

See Also
else, endif, clist

if <expression> or if <expression>
instructions instructions
endif else

instructions
endif
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - ifc

ifc

Description

Conditional assembly

Syntax

Function
The ifc, else and endc directives allow conditional assembly. The ifc
directive is followed by a constant expression. If <string1> and
<string2> are equals, the following instructions are assembled up to the
next matching endc or elsec directive; otherwise, the following instruc-
tions up to the next matching endc or elsec directive are skipped.

If the ifc statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifc expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifc “hello”, \2 ; if “hello” equals argument
ld a,#45 ; load 45
elsec ; otherwise...
ld a,#0
endc

See Also
elsec, endc, clist

ifc <string1>,<string2> orifc <string1>,<string2>
instructions instructions
endc elsec

instructions
endc
© 2008 COSMIC Software Using The Assembler 207

Assembler Directives - ifdef

ifdef

5

208
Description
Conditional assembly

Syntax

Function
The ifdef, elsec and endc directives allow conditional assembly. The
ifdef directive is followed by a label <label>. If <label> is defined, the
following instructions are assembled up to the next matching endc or
elsec directive; otherwise, the following instructions up to the next
matching endc or elsec directive are skipped. <label> must be first
defined. It cannot be a forward reference.

If the ifdef statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endif. So, if the ifdef expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifdef offset1 ; if offset1 is defined
addptr offset1 ; call a macro
elsec ; otherwise
addptr offset2 ; call a macro
endif

See Also
ifndef, elsec, endc, clist

ifdef <label> or ifdef <label>
instructions instructions
endc elsec

instructions
endc
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - ifeq

ifeq

Description

Conditional assembly

Syntax

Function
The ifeq, elsec and endc directives allow conditional assembly. The
ifeq directive is followed by a constant expression. If the result of the
expression is equal to zero, the following instructions are assembled up
to the next matching endc or elsec directive; otherwise, the following
instructions up to the next matching endc or elsec directive are skipped.

If the ifeq statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifeq expression is equal to zero,
the instructions between elsec and endc are skipped; otherwise, the
instructions between elsec and endc are assembled. An elsec directive
applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifeq offset ; if offset nul
tnz a ; just test it
elsec ; otherwise
add a,#offset ; add to accu
endc

See Also
elsec, endc, clist

ifeq <expression> or ifeq <expression>
instructions instructions
endc elsec

instructions
endc
© 2008 COSMIC Software Using The Assembler 209

Assembler Directives - ifge

ifge

5

210
Description
Conditional assembly

Syntax

Function
The ifge, elsec and endc directives allow conditional assembly. The
ifge directive is followed by a constant expression. If the result of the
expression is greater or equal to zero, the following instructions are
assembled up to the next matching endc or elsec directive; otherwise,
the following instructions up to the next matching endc or elsec direc-
tive are skipped.

If the ifge statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifge expression is greater or equal
to zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifge offset-127 ; if offset too large
addptr offset ; call a macro
elsec ; otherwise
inc x ; increment X register
endc

See Also
elsec, endc, clist

ifge <expression> or ifge <expression>
instructions instructions
endc elsec

instructions
endc
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - ifgt

ifgt

Description

Conditional assembly

Syntax

Function
The ifgt, elsec and endc directives allow conditional assembly. The ifgt
directive is followed by a constant expression. If the result of the
expression is greater than zero, the following instructions are assem-
bled up to the next matching endc or elsec directive; otherwise, the fol-
lowing instructions up to the next matching endc or elsec directive are
skipped.

If the ifgt statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifgt expression was greater than
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifgt offset-127 ; if offset too large
addptr offset ; call a macro
elsec ; otherwise
inc x ; increment X register
endc

See Also
elsec, endc, clist

ifgt <expression> or ifgt <expression>
instructions instructions
endc elsec

instructions
endc
© 2008 COSMIC Software Using The Assembler 211

Assembler Directives - ifle

ifle

5

212
Description
Conditional assembly

Syntax

Function
The ifle, elsec and endc directives allow conditional assembly. The ifle
directive is followed by a constant expression. If the result of the
expression is less or equal to zero, the following instructions are
assembled up to the next matching endc or elsec directive; otherwise,
the following instructions up to the next matching endc or elsec direc-
tive are skipped.

If the ifle statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifle expression was less or equal to
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifle offset-127 ; if offset small enough
inc x ; increment X register
elsec ; otherwise
addptr offset ; call a macro
endc

See Also
elsec, endc, clist

ifle <expression> or ifle <expression>
instructions instructions
endc elsec

instructions
endc
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - iflt

iflt

Description

Conditional assembly

Syntax

Function
The iflt, else and endc directives allow conditional assembly. The iflt
directive is followed by a constant expression. If the result of the
expression is less than zero, the following instructions are assembled
up to the next matching endc or elsec directive; otherwise, the follow-
ing instructions up to the next matching endc or elsec directive are
skipped.

If the iflt statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the iflt expression was less than zero,
the instructions between elsec and endc are skipped; otherwise, the
instructions between elsec and endc are assembled. An elsec directive
applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
iflt offset-127 ; if offset small enough
inc x ; increment X register
elsec ; otherwise
addptr offset ; call a macro
endc

See Also
elsec, endc, clist

iflt <expression> or iflt <expression>
instructions instructions
endc elsec

instructions
endc
© 2008 COSMIC Software Using The Assembler 213

Assembler Directives - ifndef

ifndef

5

214
Description
Conditional assembly

Syntax

Function
The ifndef, else and endc directives allow conditional assembly. The
ifndef directive is followed by a label <label>. If <label> is not
defined, the following instructions are assembled up to the next match-
ing endc or elsec directive; otherwise, the following instructions up to
the next matching endc or elsec directive are skipped. <label> must be
first defined. It cannot be a forward reference.

If the ifndef statement ends with an elsec directive, the expression
result is inverted and the same process applies to the following instruc-
tions up to the next matching endif. So, if the ifndef expression was not
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifndef offset1 ; if offset1 is not defined
addptr offset2 ; call a macro
elsec ; otherwise
addptr offset1 ; call a macro
endif

See Also
ifdef, elsec, endc, clist

ifndef <label> or ifndef <label>
instructions instructions
endc elsec

instructions
endc
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - ifne

ifne

Description

Conditional assembly

Syntax

Function
The ifne, elsec and endc directives allow conditional assembly. The
ifne directive is followed by a constant expression. If the result of the
expression is not equal to zero, the following instructions are assem-
bled up to the next matching endc or elsec directive; otherwise, the fol-
lowing instructions up to the next matching endc or elsec directive are
skipped.

If the ifne statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifne expression was not equal to
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifne offset ; if offset not nul
add a,#offset ; add to accu
elsec ; otherwise
tnz a ; just test it
endc

See Also
elsec, endc, clist

ifne <expression> or ifne <expression>
instructions instructions
endc elsec

instructions
endc
© 2008 COSMIC Software Using The Assembler 215

Assembler Directives - ifnc

ifnc

5

216
Description
Conditional assembly

Syntax

Function
The ifnc, elsec and endc directives allow conditional assembly. The
ifnc directive is followed by a constant expression. If <string1> and
<string2> are different, the following instructions are assembled up to
the next matching endc or elsec directive; otherwise, the following
instructions up to the next matching endc or elsec directive are skipped.

If the ifnc statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifnc expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifnc “hello”, \2
addptr offset ; call a macro
else ; otherwise
inc x ; increment X register
endif

See Also
elsec, endc, clist

ifnc <string1>,string2> or ifnc <string1><string2>
instructions instructions
endc elsec

instructions
endc
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - include

include

Description

Include text from another text file

Syntax

Function
The include directive causes the assembler to switch its input to the
specified filename until end of file is reached, at which point the assem-
bler resumes input from the line following the include directive in the
current file. The directive is followed by a string which gives the name
of the file to be included. This string must match exactly the name and
extension of the file to be included; the host system convention for
uppercase/lowercase characters should be respected.

Example
include “datstr” ; use data structure library
include “bldstd” ; use current build standard
include “matmac” ; use maths macros
include “ports82” ; use ports definition

include "filename"
© 2008 COSMIC Software Using The Assembler 217

Assembler Directives - list

list

5

218
Description
Turn on listing during assembly.

Syntax

Function
The list directive controls the parts of the program which will be written
to the listing file. It is effective if and only if listings are requested; it is
ignored otherwise.

Example
list ; expand source code until end or nolist
dc.b 1,2,4,8,16
end

See Also
nolist

list
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - lit

lit

Description

Give a text equivalent to a symbol

Syntax

Function
The lit directive is used to associate a text string to a symbol (label).
This symbol is replaced by the string content when parsed in any
assembler instruction or directive.

Example
nbr: lit “#5”

ld a,nbr ; expand as ‘ld a,#5’

See Also
equ, set

label: lit “string”
© 2008 COSMIC Software Using The Assembler 219

Assembler Directives - local

local

5

220
Description
Create a new local block

Syntax

Function
The local directive is used to create a new local block. When the local
directive is used, all temporary labels defined before the local directive
will be undefined after the local label. New local labels can then be
defined in the new local block. Local labels can only be referenced
within their own local block. A local label block is the area between
two standard labels or local directives or a combination of the two.

Example
var: ds.b 1
var2: ds.b 1
function1:
10$: ld a,var

jreq 10$
ld var2,a

local
10$: ld a,var2

jreq 10$
ld var,a
ret

local
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - macro

macro

Description

Define a macro

Syntax

Function
The macro directive is used to define a macro. The name may be any
previously unused name, a name already used as a macro, or an instruc-
tion mnemonic for the microprocessor.

Macros are expanded when the name of a previously defined macro is
encountered. Operands, where given, follow the name and are separated
from each other by commas.

The <argument_list> is optional and, if specified, is declaring each
argument by name. Each argument name is prefixed by a \ character,
and separated from any other name by a comma. An argument name is
an identifier which may contain . and _ characters.

The <macro_body> consists of a sequence of instructions not including
the directives macro or endm. It may contain macro variables which
will be replaced, when the macro is expanded, by the corresponding
operands following the macro invocation. These macro variables take
the form \1 to \9 to denote the first to ninth operand respectively and \A
to \Z to denote the tenth to 35th operand respectively, if the macro has
been defined without any <argument_list>. Otherwise, macro variables
are denoted by their name prefixed by a \ character. The macro variable
name can also be enclosed by parenthesis to avoid unwanted concatena-
tion with the remaining text. In addition, the macro variable \# contains
the number of actual operands for a macro invocation.

The special parameter * is expanded to the full list of passed arguments
separated by commas.

label: macro
<macro_body>
endm
© 2008 COSMIC Software Using The Assembler 221

Assembler Directives - macro5

222
The special parameter \0 corresponds to an extension <ext> which may
follow the macro name, separated by the period character ‘.’. For more
information, see “Macro Instructions” on page 179.

A macro expansion may be terminated early by using the mexit direc-
tive which, when encountered, acts as if the end of the macro has been
reached.

The sequence ‘\@’ may be inserted in a label in order to allow a unique
name expansion. The sequence ‘\@’ will be replaced by a unique
number.

A macro can not be defined within another macro.

Example
; define a macro that places the length of a string
; in a byte in front of the string using numbered syntax
;
ltext: macro

dc.b \@2-\@1
\@1:

dc.b \1 ; text given as first operand
\@2:

endm

; define a macro that places the length of a string
; in a byte in front of the string using named syntax
;
ltext: macro \string

dc.b \@2-\@1
\@1:

dc.b \string ; text given as first operand
\@2:

endm

See Also
endm, mexit
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - messg

messg

Description

Send a message out to STDOUT

Syntax

Function
The messg directive is used to send a message out to the host system’s
standard output (STDOUT).

Example
messg “Test code for debug”

ld a,_#2
ld _SCR,a

See Also
title

messg “<text>”
messg ‘<text>’
© 2008 COSMIC Software Using The Assembler 223

Assembler Directives - mexit

mexit

5

224
Description
Terminate a macro definition

Syntax

Function
The mexit directive is used to exit from a macro definition before the
endm directive is reached. mexit is usually placed after a conditional
assembly directive.

Example
ctrace:macro

if tflag == 0
mexit

endif
jp \1
endm

See Also
endm, macro

mexit
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - mlist

mlist

Description

Turn on or off listing of macro expansion.

Syntax

Function
The mlist directive controls the parts of the program which will be writ-
ten to the listing file produced by a macro expansion. It is effective if
and only if listings are requested; it is ignored otherwise.

The parts of the program to be listed are the lines which are assembled
in a macro expansion.

See Also
macro

mlist [on|off]
© 2008 COSMIC Software Using The Assembler 225

Assembler Directives - nolist

nolist

5

226
Description
Turn off listing.

Syntax

Function
The nolist directive controls the parts of the program which will be not
written to the listing file until an end or a list directive is encountered. It
is effective if and only if listings are requested; it is ignored otherwise.

See Also
list

Note
For compatibility with previous assemblers, the directive nol is alias to
nolist.

nolist
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - nopage

nopage

Description

Disable pagination in the listing file

Syntax

Function
The nopage directive stops the pagination mechanism in the listing out-
put. It is ignored if no listing has been required.

Example
xref mult, div
nopage
ds.b charin, charout
ds.w a, b, sum

See Also
plen, title

nopage
© 2008 COSMIC Software Using The Assembler 227

Assembler Directives - offset

offset

5

228
Description
Creates absolute symbols

Syntax

Function
The offset directive starts an absolute section which will only be used to
define symbols, and not to produce any code or data. This section starts
at the address specified by <expression>, and remains active while no
directive or instructions producing code or data is entered. This abso-
lute section is then destroyed and the current section is restored to the
one which was active when the offset directive has been entered. All the
labels defined is this section become absolute symbols.

<expression> must be a valid absolute expression. It must not contain
any forward or external references.

Example
offset 0

next:
ds.b 2

buffer:
ds.b 80

switch .text
size:

ld x,next ; ends the offset section

offset <expresion>
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - org

org

Description

Sets the location counter to an offset from the beginning of a section.

Syntax

Function
<expression> must be a valid absolute expression. It must not contain
any forward or external references.

For an absolute section, the first org before any code or data defines the
starting address.

An org directive cannot define an address smaller than the location
counter of the current section.

Any gap created by an org directive is filled with the byte defined by
the -f option.

org <expresion>
© 2008 COSMIC Software Using The Assembler 229

Assembler Directives - page

page

5

230
Description
Start a new page in the listing file

Syntax

Function
The page directive causes a formfeed to be inserted in the listing output
if pagination is enabled by either a title directive or the -ft option.

Example
xref mult, div
page
ds.b charin, charout
ds.w a, b, sum

See Also
plen, title

page
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - plen

plen

Description

Specify the number of lines per pages in the listing file

Syntax

Function
The plen directive causes <page_length> lines to be output per page in
the listing output if pagination is enabled by either a title directive or
the -ft option. If the number of lines already output on the current page
is less than <page_length>, then the new page length becomes effec-
tive with <page_length>. If the number of lines already output on the
current page is greater than or equal to <page_length>, a new page will
be started and the new page length is set to <page_length>.

Example
plen 58

See Also
page, title

plen <page_length>
© 2008 COSMIC Software Using The Assembler 231

Assembler Directives - repeat

repeat

5

232
Description
Repeat a list of lines a number of times

Syntax

Function
The repeat directive is used to cause the assembler to repeat the follow-
ing list of source line up to the next endr directive. The number of times
the source lines will be repeated is specified by the expression operand.
The repeat directive is equivalent to a macro definition followed by the
same number of calls on that macro.

Example
; shift a value n times
asln: macro

repeat \1
sla (x)
endr
endm

; use of above macro
asln 5

See Also
endr, repeatl, rexit

repeat <expression>
 repeat_body
endr
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - repeatl

repeatl

Description

Repeat a list of lines a number of times

Syntax

Function
The repeatl directive is used to cause the assembler to repeat the fol-
lowing list of source line up to the next endr directive. The number of
times the source lines will be repeated is specified by the number of
arguments, separated with commas (with a maximum of 36 arguments)
and executed each time with the value of an argument. The repeatl
directive is equivalent to a macro definition followed by the same
number of calls on that macro with each time a different argument. The
repeat argument is denoted \1 unless the argument list is starting by a
name prefixed by a \ character. In such a case, the repeat argument is
specified by its name prefixed by a \ character.

A repeatl directive may be terminated early by using the rexit directive
which, when encountered, acts as if the end of the repeatl has been
reached.

Example
; test a value using the numbered syntax
repeatl 1,2,3

add a,#\1 ; add to accu
endr
end

or

; test a value using the named syntax
repeatl \count,1,2,3

add a,#\count ; add to accu
endr
end

repeatl <arguments>
 repeat_body
endr
© 2008 COSMIC Software Using The Assembler 233

Assembler Directives - repeatl5

234
will both produce:

 2 ; test a value
 9 0000 ab01 add a,#1 ; add to accu
 9 0002 ab02 add a,#2 ; add to accu
 9 0004 ab03 add a,#3 ; add to accu
10 end

See Also
endr, repeat, rexit
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - restore

restore

Description

Restore saved section

Syntax

Function
The restore directive is used to restore the last saved section. This is
equivalent to a switch to the saved section.

Example
switch .bss

var: ds.b 1
var2: ds.b 1

save
switch .text

function1:
10$: ld a,var

jreq 10$
ld var2,a

function2:
10$: ld a,var2

sub a,var
jrne 10$
ret
restore

var3: ds.b 1
var4: ds.b 1

switch .text

ld a,var3
ld var4,a

end

See Also
save, section

restore
© 2008 COSMIC Software Using The Assembler 235

Assembler Directives - rexit

rexit

5

236
Description
Terminate a repeat definition

Syntax

Function
The rexit directive is used to exit from a repeat definition before the
endr directive is reached. rexit is usually placed after a conditional
assembly directive.

Example
; shift a value n times
asln: macro

repeat \1
if \1 == 0

rexit
endif
sla
endr
endm

; use of above macro
asln 5

See Also
endr, repeat, repeatl

rexit
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - save

save

Description

Save section

Syntax

Function
The save directive is used to save the current section so it may be
restored later in the source file.

Example
switch .bss

var: ds.b 1
var2: ds.b 1

save
switch .text

function1:
10$: ld a,var

jreq 10$
ld var2,a

function2:
10$: ld a,var2

sub a,var
jrne 10$
ret
restore

var3: ds.b 1
var4: ds.b 1

switch .text

ld a,var3
ld var4,a

end

See Also
restore, section

save
© 2008 COSMIC Software Using The Assembler 237

Assembler Directives - scross

scross

5

238
Description
Turn on or off section crossing

Syntax

Function
The scross directive controls the branch instructions optimization and
forces the usage of jpf instruction if scross is set (on) or jp instruction
otherwise. The assembler starts with scross on by default.

scross [on|off]
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - section

section

Description

Define a new section

Syntax

Function
The section directive defines a new section, and indicates that the fol-
lowing program is to be assembled into a section named
<section_name>. The section directive cannot be used to redefine an
already existing section. If no name and no attributes are specified to
the section, the default is to defined the section as a text section with its
same attributes. It is possible to associate <attributes> to the new sec-
tion. An attribute is either the name of an existing section or an attribute
keyword. Attributes may be added if prefixed by a ‘+’ character or not
prefixed, or deleted if prefixed by a ‘-’ character. Several attributes may
be specified separated by commas. Attribute keywords are:

Example
CODE: section .text ; section of text
lab1: ds.b 5
DATA: section .data ; section of data
lab2: ds.b 6

switch CODE
lab3: ds.b 7

switch DATA
lab4: ds.b 8

abs absolute section

bss bss style section (no data)

hilo values are stored in descending order of significance

even enforce even starting address and size

zpage enforce 8 bit relocation

long enforce 32 bit relocation

bit bit section

<section_name>: section [<attributes>]
© 2008 COSMIC Software Using The Assembler 239

Assembler Directives - section5

240
This will place lab1 and then lab3 into consecutive locations in sec-
tion CODE and lab2 and lab4 in consecutive locations in section
DATA.

.frame: section .bsct,even

The .frame section is declared with same attributes than the .bsct sec-
tion and with the even attribute.

.bit: section +zpage,+even,-hilo

The .bit section is declared using 8 bit relocation, with an even align-
ment and storing data with an ascending order of significance.

When the -m option is used, the section directive also accepts a number
as operand. In that case, a labelled directive is considered as a section
definition, and an unlabelled directive is considered as a section open-
ing (switch).

.rom: section 1 ; define section 1
nop

.ram: section 2 ; define section 2
dc.b 1
section 1 ; switch back to section 1
nop

It is still possible to add attributes after the section number of a section
definition line, separated by a comma.

See Also
switch, bsct
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - set

set

Description

Give a resetable value to a symbol

Syntax

Function
The set directive allows a value to be associated with a symbol. Sym-
bols declared with set may be altered by a subsequent set. The equ
directive should be used for symbols that will have a constant value.
<expression> must be fully defined at the time the equ directive is
assembled.

Example
OFST: set 10

See Also
equ, lit

label: set <expression>
© 2008 COSMIC Software Using The Assembler 241

Assembler Directives - spc

spc

5

242
Description
Insert a number of blank lines before the next statement in the listing
file.

Syntax

Function
The spc directive causes <num_lines> blank lines to be inserted in the
listing output before the next statement.

Example
spc 5
title “new file”

If listing is requested, 5 blank lines will be inserted, then the title will be
output.

See Also
title

spc <num_lines>
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - switch

switch

Description

Place code into a section.

Syntax

Function
The switch directive switches output to the section defined with the
section directive. <section_name> is the name of the target section,
and has to be already defined. All code and data following the switch
directive up to the next section, switch, bsct or end directive are placed
in the section <section_name>.

Example
switch .bss

buffer: ds.b 512
xdef buffer

This will place buffer into the .bss section.

See Also
section, bsct

switch <section_name>
© 2008 COSMIC Software Using The Assembler 243

Assembler Directives - tabs

tabs

5

244
Description
Specify the number of spaces for a tab character in the listing file

Syntax

Function
The tabs directive sets the number of spaces to be substituted to the tab
character in the listing output. The minimum value of <tab_size> is 0
and the maximum value is 128.

Example
tabs 6

tabs <tab_size>
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - title

title

Description

Define default header

Syntax

Function
The title directive is used to enable the listing pagination and set the
default page header used when a new page is written to the listing out-
put.

Example
title “My Application”

See Also
page, plen

Note
For compatibility with previous assemblers, the directive ttl is alias to
title.

title "name"
© 2008 COSMIC Software Using The Assembler 245

Assembler Directives - xbit

xbit

5

246
Description
Declare bit symbol as being defined elsewhere

Syntax

Function
Visibility of bit symbols between modules is controlled by the xref and
xbit directives. Symbols which are defined in other modules must be
declared as xbit. A symbol may be declared both xdef and xbit in the
same module, to allow for usage of common headers.

The directive xbit.b declares external symbols located in the .bsct sec-
tion.

Example
xbit otherprog
xbit.b zpage ; is in .bsct section

See Also
xdef, xref

xbit[.b] identifier[,identifier...]
© 2008 COSMIC SoftwareUsing The Assembler

Assembler Directives - xdef

xdef

Description

Declare a variable to be visible

Syntax

Function
Visibility of symbols between modules is controlled by the xdef and
xref directives. A symbol may only be declared as xdef in one module.
A symbol may be declared both xdef and xref in the same module, to
allow for usage of common headers.

Example
xdef sqrt ; allow sqrt to be called

; from another module
sqrt: ; routine to return a square root

; of a number >= zero

See Also
xbit, xref

xdef identifier[,identifier...]
© 2008 COSMIC Software Using The Assembler 247

Assembler Directives - xref

xref

5

248
Description
Declare symbol as being defined elsewhere

Syntax

Function
Visibility of symbols between modules is controlled by the xref and
xdef directives. Symbols which are defined in other modules must be
declared as xref. A symbol may be declared both xdef and xref in the
same module, to allow for usage of common headers.

The directive xref.b declares external symbols located in the .bsct sec-
tion.

Example
xref otherprog
xref.b zpage ; is in .bsct section

See Also
xbit, xdef

xref[.b] identifier[,identifier...]
© 2008 COSMIC SoftwareUsing The Assembler

CHAPTER

6

Using The Linker
This chapter discusses the clnk linker and details how it operates. It
describes each linker option, and explains how to use the linker's many
special features. It also provides example linker command lines that
show you how to perform some useful operations. This chapter includes
the following sections:

• Introduction

• Overview

• Linker Command File Processing

• Linker Options

• Section Relocation

• Setting Bias and Offset

• Linking Objects

• Linking Library Objects

• Automatic Data Initialization

• Moveable Code
© 2008 COSMIC Software Using The Linker 249

6

250
• Checksum Computation

• DEFs and REFs

• Special Topics

• Description of The Map File

• Linker Command Line Examples
© 2008 COSMIC SoftwareUsing The Linker

Introduction
Introduction
The linker combines relocatable object files, selectively loading from
libraries of such files made with clib, to create an executable image for
standalone execution or for input to other binary reformatters.

clnk will also allow the object image that it creates to have local symbol
regions, so the same library can be loaded multiple times for different
segments, and so that more control is provided over which symbols are
exposed. On microcontroller architectures this feature is useful if your
executable image must be loaded into several noncontiguous areas in
memory.

The assembler creates several sections in each object module. The
linker combines input sections in various ways, but will not break one
up. The linker then maps these combined input sections into output seg-
ments in the executable image using the options you specify.

A “segment” is a logically unified block of memory in the executable
image. An example is the code segment which contains the executable
instructions.

For most applications, the “sections” in an object module that the linker
accepts as input are equivalent to the “segments” of the executable
image that the linker generates as output.

The terms “segment” and “section” refer to different entities and are
carefully kept distinct throughout this chapter. A “section” is a contigu-
ous subcomponent of an object module that the linker treats as indivisi-
ble.

NOTE
© 2008 COSMIC Software Using The Linker 251

Overview6

252
Overview
You use the linker to build your executable program from a variety of
modules. These modules can be the output of the C cross compiler, or
can be generated from handwritten assembly language code. Some
modules can be linked unconditionally, while others can be selected
only as needed from function libraries. All input to the linker, regard-
less of its source, must be reduced to object modules, which are then
combined to produce the program file.

The linker can be used to build freestanding programs such as system
bootstraps and embedded applications. It can also be used to make
object modules that are loaded one place in memory but are designed to
execute somewhere else. For example, a data segment in ROM to be
copied into RAM at program startup can be linked to run at its actual
target memory location. Pointers will be initialized and address refer-
ences will be in place.

As a side effect of producing files that can be reprocessed, clnk retains
information in the final program file that can be quite useful. The sym-
bol table, or list of external identifiers, is handy when debugging pro-
grams, and the utility cobj can be made to produce a readable list of
symbols from an object file. Finally, each object module has in its
header useful information such as segment sizes.

In most cases, the final program file created by clnk is structurally iden-
tical to the object module input to clnk. The only difference is that the
executable file is complete and contains everything that it needs to run.
There are a variety of utilities which will take the executable file and
convert it to a form required for execution in specific microcontroller
environments. The linker itself can perform some conversions, if all
that is required is for certain portions of the executable file to be
stripped off and for segments to be relocated in a particular way. You
can therefore create executable programs using the linker that can be
passed directly to a PROM programmer.
© 2008 COSMIC SoftwareUsing The Linker

Overview
The linker works as follows:

• Options applying to the linker configuration. These options are
referred to in this chapter as “Global Command Line Options” on
page 257.

• Command file options apply only to specific sections of the object
being built. These options are referred to in this chapter as “Seg-
ment Control Options” on page 258.

• Sections can be relocated to execute at arbitrary places in physical
memory, or “stacked” on suitable storage boundaries one after the
other.

• The final output of the linker is a header, followed by all the seg-
ments and the symbol table. There may also be an additional
debug symbol table, which contains information used for debug-
ging purposes.
© 2008 COSMIC Software Using The Linker 253

Linker Command File Processing6

254
Linker Command File Processing
The command file of the linker is a small control language designed to
give the user a great deal of power in directing the actions of the linker.
The basic structure of the command file is a series of command items.
A command item is either an explicit linker option or the name of an
input file (which serves as an implicit directive to link in that file or, if it
is a library, scan it and link in any required modules of the library).

An explicit linker option consists of an option keyword followed by any
parameters that the option may require. The options fall into five
groups:

A description of each of these command line options appears below.

 Group 1

(+seg <section>) controls the creation of new segments and has
parameters which are selected from the set of local flags.

(+grp <section>) controls the section grouping.

Group 2

(+inc*) is used to include files

Group 3

(+new, +pub and +pri) controls name regions and takes no parame-
ters.

Group 4

 (+def <symbol>) is used to define symbols and aliases and takes one
required parameter, a string of the form ident1=ident2, a string of the
form ident1=constant, or a string of the form ident1=@segment.

Group 5

(+spc <segment>) is used to reserve space in a particular <segment>
and has a required parameter
© 2008 COSMIC SoftwareUsing The Linker

Linker Command File Processing
The manner in which the linker relocates the various sections is control-
led by the +seg option and its parameters. If the size of a current seg-
ment is zero when a command to start a new segment of the same name
is encountered, it is discarded. Several different sections can be redi-
rected directly to the same segment by using the +grp option.

clnk links the <files> you specify in order. If a file is a library, it is
scanned as long as there are modules to load. Only those library mod-
ules that define public symbols for which there are currently outstand-
ing unsatisfied references are included.

Inserting comments in Linker commands
Each input line may be ended by a comment, which must be prefixed by
a # character. If you have to use the # as a significant character, you can
escape it, using the syntax \#.

Here is an example for an indirect link file:

Link for EPROM
+seg .text -b0x8100 -n .text # start eprom address
+seg .const -a .text # constants follow program
+seg .bsct -b 0x0 -m 0x100 # zero page start address
+seg .data -b 0x100 -n .data # uninitialized data
+seg .bss -a .data -n .bss # initialized data to 0
\cxstm8\lib\crts.sm8 # startup object file
mod1.o mod2.o # input object files
\cxstm8\lib\libisl.sm8 # C library
\cxstm8\lib\libm.sm8 # machine library
+seg .vector -b0x8000 -0x7f # vectors eprom address
vector.o # reset and interrupt vectors
© 2008 COSMIC Software Using The Linker 255

Linker Options6

256
Linker Options
The linker accepts the following options, each of which is described in
detail below.

The output file name and the link command file must be present on
the command line. The options are described in terms of the two groups
listed above; the global options that apply to the linker, and the segment
control options that apply only to specific segments.

clnk [options] <file.lkf> [<files>]
-bs# bank size
-e* error file name
-l*> library path
-m* map file name
-o* output file name
-p phys addr in map
-s symbol table only
-sa sort symbol by address
-sl output local symbols
-v verbose
© 2008 COSMIC SoftwareUsing The Linker

Linker Options
Global Command Line Options
The global command line options that the linker accepts are:

Global linker Options

Option Description

-bs# set the window shift to #, which implies that the number of
bytes in a window is 2**#. The default value is . For more
information, see the section “Address Specification” on page
268.

-e* log errors in the text file * instead of displaying the messages
on the terminal screen.

-l*> specify library path. You can specify up to 20 different paths.
Each path is a directory name, not terminated by any direc-
tory separator character.

-m* produce map information for the program being built to file *.

-o* write output to the file *. This option is required and has no
default value.

-p display symbols with physical address instead of logical
address in the map file.

-s create an output file containing only an absolute symbol
table, but still with an object file format. The resulting file can
then be used in another link to provide the symbol table of an
existing application.

-sa display symbols sort by address instead of alphabetic order
in the map file.

-sl output local symbols in the executable file.

-v be “verbose”.
© 2008 COSMIC Software Using The Linker 257

Linker Options6

258
Segment Control Options
This section describes the segment control options that control the
structure of individual segments of the output module.

A group of options to control a specific segment must begin with a +seg
option. Such an option must precede any group of options so that the
linker can determine which segment the options that follow apply to.
The linker allows up to 255 different segments.

+seg <section> <options> start a new segment loading assembler
section type <section> and build it as directed by the <options> that
follow:

Segment Control Options Usage

Option Description

-a* make the current segment follow the segment *, where *
refers to a segment name given explicitly by a -n option.
Options -b, -e and -o cannot be specified if -a has been
specified.

-b* set the physical start address of the segment to *. Option -e
or -a cannot be specified if -b has been specified.

-c do not output any code/data for the segment.

-ck mark the segment you want to check. For more information,
see “Checksum Computation” on page 276.

-ds# set the bank size for paged addresses calculation. This
option overwrites the global -bs option for that segment.

-e* set the physical end address of the segment to *. Option -b
or -a cannot be specified if -e has been specified.

-f# fill the segment up to the value specified by the -m option
with bytes whose value is #. This option has no effect if no
-m option is specified for that segment.
© 2008 COSMIC SoftwareUsing The Linker

Linker Options
-i? define the initialization option. Valid options are:

-k mark the segment as a root segment for the unused section
suppression. This flags is usually applied on the reset and
interrupt vectors section, and as soon as it is specified at
least once in the linker command file, enables the section
suppression mechanism. This option can be used on any
other segment to force the linker to keep it even if it is not
used.

-m* set the maximum size of the segment to * bytes. If not spec-
ify, there is no checking on any segment size. If a segment
is declared with the -a option as following a segment which
is marked with the -m option, then set the maximum availa-
ble space for all the possible consecutive segments.

Segment Control Options Usage (cont.)

Option Description

-it use this segment to host the descriptor and
images copies of initialized data used for
automatic data initialization

-id initialize this segment

-ib do not initialize this segment

-ik mark this segment as checksum segment

-ic mark this segment as moveable segment
© 2008 COSMIC Software Using The Linker 259

Linker Options6

260
-n* set the output name of the segment to *. Segment output
names have at most 15 characters; longer names are trun-
cated. If no name is given with a -n option, the segment
inheritates a default name equal to its assembler section
name.
For example, use this option when you want to generate the
hex records for a particular PROM, such as:

You can generate the hex records for prom1 by typing:

For more information, see “The chex Utility” in Chapter 8.

-o* set the logical start address of the segment to * if -b option
is specified or the logical end address if -e option is speci-
fied. The default is to set the logical address equal to the
physical address. Options -b and -e cannot be specified
both if -o has been specified.

-r* round up the starting address of the segment and all the
loaded sections. The expression defines the power of two of
the alignment value. The option -r3 will align the start
address to an 8 bytes boundary. This option has no effect if
the start address is explicitly defined by a -b option.

-s* define a space name for the segment. This segment will be
verified for overlapping only against segments defined with
the same space name. See “Overlapping Control” on page
268.

-v do not verify overlapping for the segment.

-w* set the window size for banked applications, and activate
the automatic bank segment creation.

Segment Control Options Usage (cont.)

Option Description

+seg .text -b0x2000 -n prom1
<object_files>
+seg .text -b0x4000 -n prom2
<object_files>
...

chex -n prom1 file.sm8epd
© 2008 COSMIC SoftwareUsing The Linker

Linker Options
Options defining a numerical value (addresses and sizes) can be entered
as constant, symbols, or simple expression combined them with ‘+’ and
‘-’ operators. Any symbol used has to be defined before to be used,
either by a +def directive or loaded as an absolute symbol from a previ-
ously loaded object file. The operators are applied from left to right
without any priority and parenthesis () are not allowed. Such expres-
sions CANNOT contain any whitespace. For example:

The first line defines the symbol START equals to the absolute value
1000 (hex value), the second line defines the symbol MAXSIZE equals
to the absolute value 2000 (hex value). The last line opens a .text seg-
ment located at 1100 (hex value) with a maximum size of 1f00 (hex
value). For more information, see the section “Symbol Definition
Option” on page 265.

Unless -b* is given to set the bss segment start address, the bss segment
will be made to follow the last data segment in the output file. Unless
-b* is given to set the data segment start address, the data segment will
be made to follow the last bsct segment in the output file. The bsct and
text segments are set to start at zero unless you specify otherwise by
using -b option. It is permissible for all segments to overlap, as far as
clnk is concerned; the target machine may or may not make sense of
this situation (as with separate instruction and data spaces).

-x expandable segment. Allow a segment to spill in the next
segment of the same section type if its size exceeds the
value given by the -m option. The next segment must be
declared before the object causing the overflow. This
option has no effect if no -m option is specified for the
expendable segment. Option -e cannot be specified with
option -x..

Segment Control Options Usage (cont.)

Option Description

+def START=0x1000
+def MAXSIZE=0x2000
+seg .text -bSTART+0x100 -mMAXSIZE-0x100
© 2008 COSMIC Software Using The Linker 261

Linker Options6

262
Segment Grouping
Different sections can be redirected directly to the same segment with
the +grp directive:

+grp <section>=<section list> where <section> is the name of
the target section, and <section list> a list of section
names separated by commas. When loading an object file,
each section listed in the right part of the declaration will
be loaded as if it was named as defined in the left part of
the declaration. The target section may be a new section
name or the name of an existing section (including the pre-
defined ones). When using a new name, this directive has
to be preceded by a matching +seg definition.

Linking Files on the Command line
The linker supports linking objects from the command line. The link
command file has to be modified to indicate where the objects are to be
loaded using the following @# syntax.

Example
 Linking objects from the command line:

@1, @2,... include each individual object file at its positional location
on the command line and insert them at the respective
locations in the link file (@1 is the first object file, and so
on).

@* include all of the objects on the command line and insert
them at this location in the link file.

A new segment of the specified type will not actually be created if the last
segment of the same name has a size of zero. However, the new options
will be processed and will override the previous values.

NOTE

Whitespaces are not allowed aside the equal sign ‘=’ and the commas.
NOTE
© 2008 COSMIC SoftwareUsing The Linker

Linker Options
Include Option
Subparts of the link command file can be included from other files by
using the following option:

Example
 Include the file “seg2.txt” in the link file “test.lkf”:

+inc* include the file specified by *. This is equivalent to expand-
ing the text file into the link file directly at the location of the
+inc line.

clnk -o test.sm8 test.lkf file1.o file2.o

Test.lkf:
+seg .text -b0x5000
+seg .data -b0x100
@1
+seg .text -b0x7000
@2

Is equivalent to

clnk -o test.sm8 test.lkf
test.lkf
+seg .text -b0x5000
+seg .data -b0x100
file1.o
+seg .text -b0x7000
file2.o
© 2008 COSMIC Software Using The Linker 263

Linker Options6

264

Private Region Options
Options that control code regions are:

+new start a new region. A “region” is a user definable group of
input object modules which may have both public and pri-
vate portions. The private portions of a region are local to
that region and may not access or be accessed by any-
thing outside the region. By default, a new region is given
public access.

+pub make the following portion of a given region public.

+pri make the following portion of a given region private.

Test.lkf:
+seg .text -b0x5000
+seg .data -b0x100
file1.o file2.o
+seg .text -b0x7000
+inc seg2.txt

seg2.txt:
mod1.o mod2.o mod3.o

Resultant link file
+seg .text -b0x5000
+seg .data -b0x100
file1.o file2.o
+seg .text -b0x7000
mod1.o mod2.o mod3.o
© 2008 COSMIC SoftwareUsing The Linker

Linker Options
Symbol Definition Option
The option controlling symbol definition and aliases is:

+def* define new symbols to the linker. The string * must be of
the form:

ident=constant where ident is a valid identifier and constant is a
valid constant expressed with the standard C lan-
guage syntax. This form is used to add ident to
the symbol table as a defined absolute symbol
with a value equal to constant.

ident=constant:bitnum where ident is a valid identifier, constant is a valid
constant expressed with the standard C language
syntax and bitnum a constant expression between
0 and 7. This form is used to add ident to the sym-
bol table as a defined absolute bit symbol with a
value equal to constant 3-bit left shifted and or’ed
with bitnum.

ident1=ident2 where ident1 and ident2 are both valid identifiers.
This form is used to define aliases. The symbol
ident1 is defined as the alias for the symbol ident2
and goes in the symbol table as an external DEF
(a DEF is an entity defined by a given module.) If
ident2 is not already in the symbol table, it is
placed there as a REF (a REF is an entity referred
to by a given module).

ident1=ident2:bitnum where ident1 and ident2 are both valid identifiers,
and bitnum a constant between 0 and 7. This form
is used to define bit aliases. The symbol ident1 is
defined as the alias for the corresponding bit of
symbol ident2 which cannot be already a bit sym-
bol itself, and goes in the symbol table as an
external DEF (a DEF is an entity defined by a
given module.) If ident2 is not already in the sym-
bol table, it is placed there as a REF (a REF is an
entity referred to by a given module).

ident=@section where ident is a valid identifier, and section is the
name of a section specified as the first argument
of a +seg directive. This form is used to add ident
to the symbol table as a defined symbol whose
value is the address of the next byte to be loaded
in the specified section.
© 2008 COSMIC Software Using The Linker 265

Linker Options6

266
For more information about DEFs and REFs, refer to the section “DEFs
and REFs” on page 278.

ident=start(segment) where segment is the name given to a segment
by the -n option. This form is used to add ident to
the symbol table as a defined symbol whose value
is the logical start address of the designated seg-
ment. This directive can be placed anywhere in
the link command file, even before the segment is
defined.

ident=end(segment) where segment is the name given to a segment
by the -n option. This form is used to add ident to
the symbol table as a defined symbol whose value
is the logical end address of the designated seg-
ment. This directive can be placed anywhere in
the link command file, even before the segment is
defined.

ident=pstart(segment) where segment is the name given to a segment
by the -n option. This form is used to add ident to
the symbol table as a defined symbol whose value
is the physical start address of the designated
segment. This directive can be placed anywhere
in the link command file, even before the segment
is defined.

ident=pend(segment) where segment is the name given to a segment
by the -n option. This form is used to add ident to
the symbol table as a defined symbol whose value
is the physical end address of the designated seg-
ment. This directive can be placed anywhere in
the link command file, even before the segment is
defined.

ident=size(segment) where segment is the name given to a segment
by the -n option. This form is used to add ident to
the symbol table as a defined symbol whose value
is the size of the designated segment. This direc-
tive can be placed anywhere in the link command
file, even before the segment is defined.

Whitespaces are not allowed aside the equal sign ‘=’.
NOTE
© 2008 COSMIC SoftwareUsing The Linker

Linker Options
Reserve Space Option
The following option is used to reserve space in a given segment:

Handle Dependencies
This directive allows creating or suppressing a dependency between
two functions using their assembly level symbol:

This directive is mostly used to help building complex applications
using a static model.

+spc <segment>=<value> reserve <value> bytes of space at the
current location in the segment named
<segment>.

+spc <segment>=@section reserve a space at the current location
in the segment named <segment>
equal to the current size of the opened
segment where the given section is
loaded. The size is evaluated at once,
so if the reference segment grows after
that directive, there is no further modifi-
cation of the space reservation. If such
a directive is used to duplicate an exist-
ing section, it has to be placed in the
link command file after all the object
files.

+dep <func1>+<func2> add a dependence marking <func1> as call-
ing <func2>.

+dep <func1>-<func2> suppress a dependence marking <func1> as
not calling <func2>.

Whitespaces are not allowed aside the equal sign ‘=’.
NOTE

Whitespaces are not allowed aside the + and - signs.
NOTE
© 2008 COSMIC Software Using The Linker 267

Section Relocation6

268
Section Relocation
The linker relocates the sections of the input files into the segments of
the output file.

An absolute section, by definition, cannot and should not be relocated.
The linker will detect any conflicts between the placement of this file
and its absolute address given at compile/assemble time.

In the case of a bank switched system, it is still possible for an absolute
section to specify a physical address different from the one and at com-
pile/assembly time, the logical address MUST match the one specified
at compile/assemble time.

Address Specification
The two most important parameters describing a segment are its bias
and its offset, respectively its physical and logical start addresses. In
nonsegmented architectures there is no distinction between bias and off-
set. The bias is the address of the location in memory where the seg-
ment is relocated to run. The offset of a segment will be equal to the
bias. In this case you must set only the bias. The linker sets the offset
automatically.

Overlapping Control
The linker is verifying that a segment does not overlap any other one,
by checking the physical addresses (bias). This control can be locally
disabled for one segment by using the -v option. For targets implement-
ing separated address spaces (such as bank switching), the linker allows
several segments to be isolated from the other ones, by giving them a
space name with the -s option. In such a case, a segment in a named
space is checked only against the other segments of the same space. The
unnamed segments are checked together.

Setting Bias and Offset
The bias and offset of a segment are controlled by the -b* option and
-o* option. The rules for dealing with these options are described
below.
© 2008 COSMIC SoftwareUsing The Linker

Setting Bias and Offset
Setting the Bias
If the -b* option is specified, the bias is set to the value specified by *.
Otherwise, the bias is set to the end of the last segment of the same
name. If the -e* option is specified, the bias is set to value obtain by
subtracting the segment size to the value specified by *.

Setting the Offset
If the -o* option is specified, the offset is set to the value specified by *.
Otherwise, the offset is set equal to the bias.

Using Default Placement
If none of -b, -e or -o options is specified, the segment may be placed
after another one, by using the -a* option, where * is the name of
another segment. Otherwise, the linker will try to use a default place-
ment based on the segment name. The compiler produces specific sec-
tions for code (.text) and data (.data, .bss, .bsct and .ubsct). By default,
.text and .bsct segments start at zero, .ubsct segment follows the latest
.bsct segment, .data segment follows the latest .ubsct segment, and .bss
segment follows the latest .data segment. Note that there is no default
placement for the constants segment .const and the bit segment .bit.

Bit Segment Handling
Bit segments are allocated using bit addresses. A bit address is a value
based on the byte address and the bit number in this byte. The bit
address is equal to the byte address 3-bit left shifted or’ed with the bit
number. The bias (or offset) value can be entered directly as a bit
address or with a special syntax combining the byte address and the bit
number. The following lines are identical:

When using the -a option, the linker automatically converts byte
address to bit address when entering a bit segment from a byte segment,
starting at bit 0, and converts a bit address to a byte address when leav-
ing a bit segment to a byte segment, starting from next available byte.

Bit addresses are displayed in the map file using the combined syntax.

+seg .bit -b 0x103
+seg .bit -b 0x20:3
© 2008 COSMIC Software Using The Linker 269

Setting Bias and Offset6

270
If the bit segment contains initialized variables, the code must be linked
with an appropriate startup file and the bit segment must be declared
with option -id in the linker command file. Otherwise, the bit segment
must be declared with option -c to suppress it from the output file.
© 2008 COSMIC SoftwareUsing The Linker

Linking Objects
Linking Objects
A new segment is built by concatenating the corresponding sections of
the input object modules in the order the linker encounters them. As
each input section is added to the output segment, it is adjusted to be
relocated relative to the end portion of the output segment so far con-
structed. The first input object module encountered is relocated relative
to a value that can be specified to the linker. The size of the output bss
segment is the sum of the sizes of the input bss sections.

Unless the -v option has been specified on a segment definition, the
linker checks that the segment physical address range does not overlap
any other segment of the application. Logical addresses are not checked
as bank switching creates several segments starting at the same logical
address.

Linking Library Objects
The linker will selectively include modules from a library when out-
standing references to member functions are encountered. The library
file must be place after all objects that may call it’s modules to avoid
unresolved references. The standard ANSI libraries are provided in two
versions to provide the level of support that your application needs.
This can save a significant amount of code space and execution time
when full ANSI single precision floating point support is not needed.
The first letter after “lib” in each library file denotes the library type (f
for single precision, and i for integer). See below.

libf.sm8 Single Precision Library. This library is used for applica-
tions where only single precision floating point support is
needed. Link this library before the other libraries when
only single precision floats are used.

libi.sm8 Integer only Library. This library is designed for applica-
tions where no floating point is used. Floats can still be
used for arithmetic but not with the standard library. Link
this library before the other libraries when only integer
libraries are needed.
© 2008 COSMIC Software Using The Linker 271

Linking Library Objects6

272
Library Order
You should link your application with the libraries in the following
orders:

For more information, see “Linker Command Line Examples” on page
286.

Libraries Setup Search Paths
The linker uses the environment variable CXLIB to search for objects
and library files. If you don’t specify the full path to the objects and/or
libraries in the link command file AND they are not found in the local
directory, the linker will then search all paths specified by the CXLIB
environment variable. This allows you to specify just the names of the
objects and libraries in your link command file. For example, setting the
CXLIB environment variable to the C:\COSMIC\LIB directory is
done as follow:

Memory Model Machine
Library

Integer Only
Library Float Library

Stack Short
libm(0).sm8

libis(0).sm8 libfs(0).sm8

Stack Long libisl(0).sm8 libfsl(0).sm8

Integer Only
Application

Single Precision
Float Application

libi.sm8 libf.sm8

libm.sm8 libi.sm8

libm.sm8

When using a model for application smaller than 64K, you must link with
the specific set of libraries (names ending with ‘0’).

NOTE

C>set CXLIB=C:\COSMIC\LIB
© 2008 COSMIC SoftwareUsing The Linker

Automatic Data Initialization
Automatic Data Initialization
The linker is able to config-ure the executable for an automatic data ini-
tialization. This mechanism is initiated automatically when the linker
finds the symbol __idesc__ in the symbol table, as an undefined sym-
bol. clnk first locates a segment behind which it will add an image of
the data, so called the host segment. The default behaviour is to select
the first .text segment in the executable file, but you can override this
by marking one segment with the -it option.

Then, clnk looks in the executable file for initialized segments. All the
segments .data and .bsct are selected by default, unless disabled explic-
itly by the -ib option. Otherwise, renamed segments may also be
selected by using the -id option. The -id option cannot be specified on a
bss segment, default or renamed. Once all the selected segments are
located, clnk builds a descriptor containing the starting address and
length of each such segment, and moves the descriptor and the selected
segments to the end of the host segment, without relocating the content
of the selected segments.

For more information, see “Generating Automatic Data Initialization”
in Chapter 2 and “Initializing data in RAM” in Chapter 3.

Descriptor Format
The created descriptor has the following format:

 dc.w start_ram_address;starting address of the
; first image in prom

; for each segment:
 dc.b flag ; segment type
 dc.w start_ram_address ; start address of segment in ram
 dc.w end_prom_address ; address of last data byte

; plus one in prom
; after the last segment:
 dc.b 0

The flag byte is used to detect the end of the descriptor, and also to
specify a type for the data segment. The actual value is equal to the
code of the first significant letter in the segment name.

If the RAM segment has been created using banked addresses (-b and
-o values), the RAM start address is described using two words, the first
© 2008 COSMIC Software Using The Linker 273

Moveable Code6

274
giving the page value for that segment and the second giving the match-
ing value for the start address in that space. A segment description is
displayed as:

dc.b flag ; segment type
dc.w paged_ram_address ; paged value of ram start address
dc.w start_ram_address ; start address of segment in ram
dc.w end_prom_address ; address of last data byte

The end address in PROM of one segment gives also the starting
address in prom of the following segment, if any.

The address of the descriptor will be assigned to the symbol __idesc__,
which is used by the crtsi.s startup routine. So all this mechanism will
be activated just by linking the crtsi.sm8 file with the application, or by
referencing the symbol __idesc__ in your own startup file.

If the host segment has been opened with a -m option giving a maxi-
mum size, clnk will check that there is enough space to move all the
selected segments.

Moveable Code
The linker allows a code segment to be stored in the ROM part, but
linked at another address which is supposed to be located in RAM. This
feature is specially designed to allow an application to run FLASH pro-
gramming routines or bootloader from the RAM space. This feature is
sharing the same global mechanism than initialized data, and the com-
mon descriptor built by the linker contains both record types. The flag
byte is used to qualify each entry. In order to implement such a feature,
the link command file should contain a dedicated code segment marked
with the -ic option:

LINKER EXAMPLE FOR MOVEABLE CODE
#
mark this segment with -ic and link it at RAM address
#
+seg .text -b 0x100 -n boot -ic
flash.o
+seg .text -b 0x8000 -n code# application code
file.o
...
© 2008 COSMIC SoftwareUsing The Linker

Moveable Code
The function contained in the object flash.o is now linked at the RAM
address 0x100 but stored somewhere in the code space along with any
other initialized data. It is not necessary to link the application with the
startup routine crtsi.s if the application does not contain initialized data
but the descriptor will be built as soon as a moveable function is used
by the application, but if the crts.s startup is used, moveable code seg-
ments are not copied in RAM at the application start up.

In order to use such a function, it is necessary to first copy it from ROM
to RAM. This is done by calling the library function _fctcpy() with one
character argument equal to the first significant letter of the moveable
segment name. This argument allows an application to implement sev-
eral different moveable segments for different kind of situations. In
such a case, all the moveable segment names should have names with
different first character. This function returns a boolean status equal to 0
if no moveable segment has been copied, or a value different of zero
otherwise. Once the segment has been successfully copied, the RAM
function can be called directly:

if (_fctcpy(‘b’))
flash();

There is no possible name conflict between data segment names and
moveable code segment names because the linker internally marks the
flag byte differently.
© 2008 COSMIC Software Using The Linker 275

Checksum Computation6

276
Checksum Computation
This feature is activated by the detection of the symbol __ckdesc__ as
an undefined symbol. This is practically done by calling one of the pro-
vided checksum functions which uses that symbol and returns 0 if the
checksum is correct. These functions are provided in the integer library
and are the following:

You then have to update the link command file in two ways:

1) Mark the segments (usually code segments) you want to check, by
using the -ck option on the +seg line. Note that you need only to
mark the first segment of a hooked list, meaning that if a segment is
declared with -a option as following a segment which is marked
with the -ck option, it will automatically inherit the -ck marker and
will be also checked. Note also that if you are using the automatic
initialization mechanism, and if the code segment hosting the init
descriptor (-it) is also marked with -ck, the init segment and ALL
the initialization copy segments will also be checked.

2) Create an empty segment which will contain the checksum descrip-
tor. This has to be an empty segment, located wherever you want
with a -b or -a option. This segment will NOT be checked, even if
marked or hooked to a marked segment. The linker will fill this seg-
ment with a data descriptor allowing the checking function to scan

_checksum() check a 8 bit checksum stored once for all the
selected segments.

_checksumx() check a 8 bit checksum stored for every
selected segments. This method allows a seg-
ment to be dynamically reloaded by updating
the corresponding CRC byte.

_checksum16() check a 16 bit checksum stored once for all the
selected segments.

_checksum16x() check a 16 bit checksum stored for every
selected segments. This method allows a seg-
ment to be dynamically reloaded by updating
the corresponding CRC word.
© 2008 COSMIC SoftwareUsing The Linker

Checksum Computation
all the requested segments and compute the final crc. This segment
has to be specially marked with the option -ik to allow the linker to
recognize it as the checksum segment. Add the definition for sym-
bol __ckdend__ marking the end of the descriptor segment, with a
+def directive using the end() feature implying that the descriptor
segment has been named with a -n option.

Here is an example of link command file showing how to use -ck and
-ik:

LINKER EXAMPLE FOR CHECKSUM IMPLEMENTATION
#
mark the first segment of an attached list with -ck
#
+seg .text -b 0x8000 -n code -ck# this segment is marked
+seg .const -a code -n const# this one is implicitly marked
#
create an empty segment for checksum table marked with -ik
#
+seg .cksum -a const -n cksum -ik # checksum segment
+def __ckdend__=end(cksum) # checksum segment end
#
remaining part should contain the verification code
#
+seg .data -b 0x100
crtsix.sm8
test.o
libi.sm8
libm.sm8
+def __memory=@.bss

The descriptor built by the linker is a list of entries followed by the
expected CRC value, only once if functions _checksum() or
_checksum16() are called, or after each entry if functions _checksumx()
or _checksum16x() are called. An entry contains a flag byte, a start
address and an end address. The flag byte is non-zero, and is or'ed with
0x80 if the start address contains a bank value (two words, page first
then start address), otherwise it is just one word with the start address.
The end address is always one word. The last entry is always followed
by a nul byte (seen as an ending flag), and immediately followed by the
expected CRC if functions _checksum() or _checksum16() are called.
The linker compresses the list of entries by creating only one entry for
contiguous segments (as long as they are in the same space (-s* option)
and in the same bank/page).
© 2008 COSMIC Software Using The Linker 277

DEFs and REFs6

278
The current linker implements only on algorithm. Starting with zero,
the CRC byte/word is first rotated one bit left (a true bit rotation), then
xor'ed with the code byte. The CRC values stored in the checksum
descriptor are the one’s complement value of the expected CRC.

DEFs and REFs
The linker builds a new symbol table based on the symbol tables in the
input object modules, but it is not a simple concatenation with adjust-
ments. There are two basic type of symbols that the linker puts into its
internal symbol table: REFs and DEFs. DEFs are symbols that are
defined in the object module in which they occur. REFs are symbols
that are referenced by the object module in which they occur, but are
not defined there.

The linker also builds a debug symbol table based on the debug symbol
tables in any of the input object modules. It builds the debug symbol
table by concatenating the debug symbol tables of each input object
module in the order it encounters them. If debugging is not enabled for
any of input object module, the debug symbol table will be of zero
length.

An incoming REF is added to the symbol table as a REF if that symbol
is not already entered in the symbol table; otherwise, it is ignored (that
reference has already been satisfied by a DEF or the reference has
already been noted). An incoming DEF is added to the symbol table as
a DEF if that symbol is not already entered in the symbol table; its
value is adjusted to reflect how the linker is relocating the input object
module in which it occurred. If it is present as a REF, the entry is
changed to a DEF and the symbol’s adjusted value is entered in the
symbol table entry. If it is present as a DEF, an error occurs (multiply
defined symbol).

When the linker is processing a library, an object module in the library
becomes an input object module to the linker only if it has at least one
DEF which satisfies some outstanding REF in the linker's internal sym-
bol table. Thus, the simplest use of clnk is to combine two files and
check that no unused references remain.
© 2008 COSMIC SoftwareUsing The Linker

Special Topics
The executable file created by the linker must have no REFs in its sym-
bol table. Otherwise, the linker emits the error message “undefined sym-
bol” and returns failure.

Special Topics
This section explains some special linker capabilities that may have
limited applicability for building most kinds of microcontroller applica-
tions.

Private Name Regions
Private name regions are used when you wish to link together a group
of files and expose only some to the symbol names that they define.
This lets you link a larger program in groups without worrying about
names intended only for local usage in one group colliding with identi-
cal names intended to be local to another group. Private name regions
let you keep names truly local, so the problem of name space pollution
is much more manageable.

An explicit use for private name regions in a STM8 environment is in
building a paged program with duplication of the most used library
functions in each page, in order to avoid extra page commutation. To
avoid complaints when multiple copies of the same file redefine sym-
bols, each such contribution is placed in a private name region accessi-
ble only to other files in the same page.

The basic sequence of commands for each island looks like:

Any symbols defined in <public files> are known outside this private
name region. Any symbols defined in <private libraries> are known
only within this region; hence they may safely be redefined as private to
other regions as well.

+new <public files> +pri <private libraries>

All symbols defined in a private region are local symbols and will not
appear in the symbol table of the output file.

NOTE
© 2008 COSMIC Software Using The Linker 279

Special Topics6

280
Renaming Symbols
At times it may be desirable to provide a symbol with an alias and to
hide the original name (i.e., to prevent its definition from being used by
the linker as a DEF which satisfies REFs to that symbol name). As an
example, suppose that the function func in the C library provided with
the compiler does not do everything that is desired of it for some special
application. There are three methods of handling this situation (we will
ignore the alternative of trying to live with the existing function’s defi-
ciencies).

The first method is to write a new version of the function that performs
as required and link it into the program being built before linking in the
libraries. This will cause the new definition of func to satisfy any refer-
ences to that function, so the linker does not include the version from
the library because it is not needed. This method has two major draw-
backs: first, a new function must be written and debugged to provide
something which basically already exists; second, the details of exactly
what the function must do and how it must do it may not be available,
thus preventing a proper implementation of the function.

The second approach is to write a new function, say my_func, which
does the extra processing required and then calls the standard function
func. This approach will generally work, unless the original function
func is called by other functions in the libraries. In that case, the extra
function behavior cannot occur when func is called from library func-
tions, since it is actually my_func that performs it.

The third approach is to use the aliasing capabilities of the linker. Like
the second method, a new function will be written which performs the
new behavior and then calls the old function. The twist is to give the old
function a new name and hide its old name. Then the new function is
given the old function’s name and, when it calls the old function, it uses
the new name, or alias, for that function. The following linker script
provides a specific example of this technique for the function func:

line 1 +seg .text -b 0x1000
line 2 +seg .data -b0
line 3 +new
line 4 Crts.xx
line 5 +def _oldfunc=_func
© 2008 COSMIC SoftwareUsing The Linker

Special Topics
line 6 +pri func.o
line 7 +new
line 8 prog.o newfunc.o
line 9 <libraries>

The main thing to note here is that func.o and new_func.o both define a
(different) function named func. The second function func defined in
newfunc.o calls the old func function by its alias oldfunc.

Name regions provide limited scope control for symbol names. The
+new command starts a new name region, which will be in effect until
the next +new command. Within a region there are public and private
name spaces. These are entered by the +pub and +pri commands; by
default, +new starts in the public name space.

Lines 1,2 are the basic linker commands for setting up a separate I/D
program. Note that there may be other options required here, either by
the system itself or by the user.

Line 3 starts a new region, initially in the public name space.

Line 4 specifies the startup code for the system being used.

Line 5 establishes the symbol _oldfunc as an alias for the symbol _func.
The symbol _oldfunc is entered in the symbol table as a public defini-
tion. The symbol _func is entered as a private reference in the current
region.

Line 6 switches to the private name space in the current region. Then
func.o is linked and provides a definition (private, of course) which sat-
isfies the reference to _func.

The function name func as referenced here is the name as seen by the C
programmer. The name which is used in the linker for purposes of alias-
ing is the name as seen at the object module level. For more information
on this transformation, see the section “Interfacing C to Assembly Lan-
guage” in Chapter 3.

NOTE
© 2008 COSMIC Software Using The Linker 281

Special Topics6

282
Line 7 starts a new name region, which is in the public name space by
default. Now no reference to the symbol _func can reach the definition
created on Line 6. That definition can only be reached now by using the
symbol _oldfunc, which is publicly defined as an alias for it.

Line 8 links the user program and the module newfunc.o, which pro-
vides a new (and public) definition of _func. In this module the old ver-
sion is accessed by its alias. This new version will satisfy all references
to _func made in prog.o and the libraries.

Line 9 links in the required libraries.

The rules governing which name space a symbol belongs to are as fol-
lows:

• Any symbol definition in the public space is public and satisfies
all outstanding and future references to that symbol.

• Any symbol definition in the private space of the current region is
private and will satisfy any private reference in the current region.

• All private definitions of a symbol must occur before a public def-
inition of that symbol. After a public definition of a symbol, any
other definition of that symbol will cause a “multiply defined sym-
bol” error.

• Any number of private definitions are allowed, but each must be
in a separate region to prevent a multiply defined symbol error.

• Any new reference is associated with the region in which the ref-
erence is made. It can be satisfied by a private definition in that
region, or by a public definition. A previous definition of that
symbol will satisfy the reference if that definition is public, or if
the definition is private and the reference is made in the same
region as the definition.

• If a new reference to a symbol occurs, and that symbol still has an
outstanding unsatisfied reference made in another region, then
that symbol is marked as requiring a public definition to satisfy it.
© 2008 COSMIC SoftwareUsing The Linker

Special Topics
• Any definition of a symbol must satisfy all outstanding references
to that symbol; therefore, a private definition of a symbol which
requires a public definition causes a blocked symbol reference
error.

• No symbol reference can “reach” any definition made earlier than
the most recent definition.

Absolute Symbol Tables
Absolute Symbol tables are used to export symbols from one application
to another, to share common functions for instance, or to use functions
already built in a ROM, from an application downloaded into RAM.
The linker option -s will modify the output file in order to contain only
a symbol table, without any code, but still with an object file format, by
using the same command file used to build the application itself. All
symbols are flagged as absolute symbols. This file can be used in
another link, and will then transmit its symbol table, allowing another
application to use those symbols as externals. Note that the linker does
not produce any map even if requested, when used with the -s option.

The basic sequence of commands looks like:

The first link builds the application itself using the appli.lkf command
file. The second link uses the same command file and creates an object
file containing only an absolute symbol table. This file can then be used
as an input object file in any other link command file.

clnk -o appli.sm8 -m appli.map appli.lkf
clnk -o appli.sym -s appli.lkf
© 2008 COSMIC Software Using The Linker 283

Description of The Map File6

284
Description of The Map File
The linker can output a map file by using the -m option. The map file
contains 4 sections: the Segment section, the Modules section, the Stack
Usage section and the Symbols section.

Segment Describe the different segments which compose the appli-
cation, specifying for each of them: the start address (in
hexa), the end address (in hexa), the length (in decimal),
and the name of the segment. Note that the end value is the
address of the byte following the last one of the segment,
meaning that an empty segment will have the same start
and end addresses. If a segment is initialized, it is dis-
played twice, the first time with its final address, the sec-
ond time with the address of the image copy.

Modules List all the modules which compose the application, giving
for each the description of all the defined sections with the
same format as in the Segment section. If an object has
been assembled with the -pl option, local symbols are dis-
played just after the module description.

Stack Usage Describe the amount of memory needed for the stack.
Each function of the application is listed by its name, fol-
lowed by a ‘>’ character indicating that this function is not
called by any other one (the main function, interrupt func-
tions, task entries...). The first number is the total size of
the stack used by the function including all the internal
calls. The second number between braces shows the stack
need for that function alone. The entry may be flagged by
the keyword “Recursive” meaning that this function is
itself recursive or is calling directly or indirectly a recur-
sive function, and that the total stack space displayed is not
accurate. The linker may detect potential but not actual
recursive functions when such functions are called by
pointer.The linker displays at the end of the list a total
stack size assuming interrupt functions cannot be them-
selves interrupted. Interrupt frames and machine library
calls are properly counted.
© 2008 COSMIC SoftwareUsing The Linker

Return Value
Call Tree List all the functions sorted alphabetically followed by all
the functions called inside. The display goes on recursively
unless a function has already been listed. In such a case,
the name is followed by the line number where the func-
tion is expanded. If a line becomes too long, the process is
suspended and the line ends with a ... sequence indicating
that this function is listed later. Functions called by pointer
are listed between parenthesis, or between square brackets
if called from an array of pointers.

Symbols List all the symbols defined in the application specifying
for each its name, its value, the section where it is defined,
and the modules where it is used. If the target processor
supports bank switching, addresses are displayed as logical
addresses by default. Physical addresses can be displayed
by specifying the -p option on the linker command line.
Addresses of bit symbols are displayed with the byte
address followed by a colon character and the bit number.

Return Value
clnk returns success if no error messages are printed to STDOUT; that
is, if no undefined symbols remain and if all reads and writes succeed.
Otherwise it returns failure.
© 2008 COSMIC Software Using The Linker 285

Linker Command Line Examples6

286
Linker Command Line Examples
This section shows you how to use the linker to perform some basic
operations.

A linker command file consists of linker options, input and output file,
and libraries. The options and files are read from a command file by the
linker. For example, to create an STM8 file from file.o you can type at
the system prompt:

where myapp.lkf contains:

+seg .text -b0xf000 -n .text # start eprom address
+seg .const -a .text # constants follow program
+seg .bsct -b0x0 -niram -m 0x100# initialized zero page
+seg .data -b0x100 # start data address
\cxstm8\lib\crts.sm8 # startup object file
file1.o file2.o # input object files
\cxstm8\lib\libis.sm8 # C library
\cxstm8\lib\libm.sm8 # machine library
+def __memory=@.bss # symbol used by startup

The following link command file is an example for an application that
does not use floating point data types and does not require automatic
initialization.

demo.lkf: link command WITHOUT automatic init
+seg .text -b 0xf000 -n.text # program start address
+seg .const -a .text # constants follow program
+seg .bsct -b0x0 -niram -m 0x100# initialized zero page
+seg .data -b0x100 # start data address
\cxstm8\lib\crts.sm8 # startup with NO-INIT
acia.o # main program
module1.o # module program
\cxstm8\lib\libis.sm8 # C library
\cxstm8\lib\libm.sm8 # machine library
+seg .const -b0x8000 # vectors eprom address
vector.o # reset & interrupt vectors
define these symbols if crtsi is used
+def __endzp=@.ubsct # end of uninitialized zpage
+def __memory=@.bss # symbol used by library

clnk -o myapp.sm8 myapp.lkf
© 2008 COSMIC SoftwareUsing The Linker

Linker Command Line Examples
The following link command file is an example for an application that
uses single precision floating point data types and utilizes automatic
data initialization.

demo.lkf: link command WITH automatic init
+seg .text -bf000 0x -n.text # program start address
+seg .const -a .text # constants follow program
+seg .bsct -b0x80 -niram -m 0x80# initialized zero page
+seg .ubsct -n iram # uninitialized zero page
+seg .data -b0x100 # start data address
\cxstm8\lib\crtsi.sm8 # startup with auto-init
acia.o # main program
module1.o # module program
\cxstm8\lib\libfs.sm8 # single precision library
\cxstm8\lib\libis.sm8 # integer library
\cxstm8\lib\libm.sm8 # machine library
+seg .const -b0x8000 # vectors eprom address
vector.o # reset & interrupt vectors
define these symbols if crtsi is used
+def __endzp=@.ubsct # end of uninitialized zpage
+def __memory=@.bss # end of bss segment
© 2008 COSMIC Software Using The Linker 287

CHAPTER

7

Debugging Support
This chapter describes the debugging support available with the cross
compiler targeting the STM8. There are two levels of debugging sup-
port available, so you can use either the COSMIC’s Zap C source level
cross debugger or your own debugger or in-circuit emulator to debug
your application. This chapter includes the following sections:

• Generating Debugging Information

• Generating Line Number Information

• Generating Data Object Information

• The cprd Utility

• The clst utility
© 2008 COSMIC Software Debugging Support 289

Generating Debugging Information7

290
Generating Debugging Information
The compiler generates debugging information in response to command
line options you pass to the compiler as described below. The compiler
can generate the following debugging information:

1 line number information that allows COSMIC’s C source level
debugger or another debugger or emulator to locate the address of the
code that a particular C source line (or set of lines) generates. You
may put line number information into the object module in either of
the two formats, or you can generate both line number information
and information about program data and function arguments, as
described below.

2 information about the name, type, storage class and address (abso-
lute or relative to a stack offset) of program static data objects, func-
tion arguments, and automatic data objects that functions declare.
Information about what source files produced which relocatable or
executable files. This information may be localized by address
(where the output file resides in memory). It may be written to a file,
sorted by address or alphabetical order, or it may be output to a
printer in paginated or unpaginated format.

Generating Line Number Information
The compiler puts line number information into a special debug symbol
table. The debug symbol table is part of the relocatable object file pro-
duced by a compilation. It is also part of the output of the clnk linker.
You can therefore obtain line number information about a single file, or
about all the files making up an executable program. However, the
compiler can produce line number information only for files that are
fewer than 65,535 lines in length.

Generating Data Object Information
The +debug option directs the compiler to generate information about
data objects and function arguments and return types. The debugging
information the compiler generates is the information used by the
COSMIC’s C source level cross debugger or another debugger or emu-
lator. The information produced about data objects includes their name,
scope, type and address. The address can be either absolute or relative
to a stack offset.
© 2008 COSMIC SoftwareDebugging Support

Generating Debugging Information
As with line number information alone, you can generate debugging
information about a single file or about all the files making up an exe-
cutable program.

cprd may be used to extract the debugging information from files com-
piled with the +debug option, as described below.
© 2008 COSMIC Software Debugging Support 291

The cprd Utility7

292
The cprd Utility
cprd extracts information about functions and data objects from an
object module or executable image that has been compiled with the
+debug option. cprd extracts and prints information on the name, type,
storage class and address (absolute or offset) of program static data
objects, function arguments, and automatic data objects that functions
declare. For automatic data, the address provided is an offset from the
frame pointer. For function arguments, the address provided is an offset
from the stack pointer.

Command Line Options
cprd accepts the following command line options, each of which is
described in detail below:

where <file> is an object file compiled from C source with the com-
piler command line option +debug set.

Cprd Option Usage

Option Description

-fc* print debugging information only about the function *. By
default, cprd prints debugging information on all functions in
<file>. Note that information about global data objects is
always displayed when available.

-fl* print debugging information only about the file *. By default,
cprd prints debugging information on all C source files.

-o* print debugging information to file *. Debugging information
is written to your terminal screen by default.

-r Display structure fields with their offset.

-s Display object size in bytes.

cprd [options] file
-fc* select function name
-fl* select file name
-o* output file name
-r recurse structure fields
-s display object size
© 2008 COSMIC SoftwareDebugging Support

The cprd Utility
By default, cprd prints debugging information about all functions and
global data objects in <file>.

Examples
The following example show sample output generated by running the
cprd utility on an object file created by compiling the program acia.c
with the compiler option +debug set.

Information extracted from acia.sm8

source file acia.c:

unsigned char buffer[64] at 0x0104
unsigned char *ptlec at 0x0102
unsigned char *ptecr at 0x0100

unsigned char getch() lines 26 to 36 at 0x810a-0x8135
 auto unsigned char c at -1 from frame pointer

void outch() lines 40 to 45 at 0x8136-0x8144
 argument unsigned char c at 0 from frame pointer

void recept() lines 51 to 57 at 0x8145-0x8167
 (no locals)

void main() lines 63 to 72 at 0x8168-0x818a
 (no locals)

source file vector.c:

void (*_vectab[16])() at 0x8000

cprd acia.sm8
© 2008 COSMIC Software Debugging Support 293

The clst utility7

294
The clst utility
The clst utility takes relocatable or executable files as arguments, and
creates listings showing the C source files that were compiled or linked
to obtain those relocatable or executable files. It is a convenient utility
for finding where the source statements are implemented.

To use clst efficiently, its argument files must have been compiled with
the +debug option.

clst can be instructed to limit its display to files occupying memory in a
particular range of addresses, facilitating debugging by excluding extra-
neous data. clst will display the entire content of any files located
between the endpoints of its specified address range.

Command Line Options
clst accepts the following command line options, each of which is
described in detail below:

Clst Option Usage

Option Description

-a when set, cause clst to list files in alphabetical order. The
default is that they are listed by increasing addresses.

-f*> specify * as the file to be processed. Default is to process all
the files of the application. Up to 10 files can be specified.

-i*> read string * to locate the source file in a specific directory.
Source files will first be searched for in the current directory,
then in the specified directories in the order they were given
to clst. You can specify up to 20 different paths Each path is
a directory name, not terminated by any directory separator
character.

clst [options> file
-a list file alphabetically
-f*> process selected file
-i*> source file
-l# page length
-o* output file name
-p suppress pagination
-r* specify a line range #:#
© 2008 COSMIC SoftwareDebugging Support

The clst utility
-l# when paginating output, make the listings # lines long. By
default, listings are paginated at 66 lines per page.

-o* redirect output from clst to file *. You can achieve a similar
effect by redirecting output in the command line.

is equivalent to:

-p suppress pagination. No page breaks will be output.

-r#:# where #:# is a range specification. It must be of the form
<number>:<number>. When this flag is specified, only
those source files occupying memory in the specified range
will be listed. If part of a file occupies memory in the speci-
fied range, that file will be listed in its entirety. The following
is a valid use of -r:

Clst Option Usage (cont.)

Option Description

clst -o acia.lst acia.sm8

clst acia.sm8 >acia.lst

-r 0xe000:0xe200
© 2008 COSMIC Software Debugging Support 295

CHAPTER

8

Programming Support
This chapter describes each of the programming support utilities pack-
aged with the C cross compiler targeting the STM8. The following util-
ities are available:

The assembler is described in Chapter 5, “Using The Assembler”. The
linker is described in Chapter 6, “Using The Linker”. Support for
debugging is described in Chapter 7, “Debugging Support”.

The description of each utility tells you what tasks it can perform, the
command line options it accepts, and how you use it to perform some
commonly required operations. At the end of the chapter are a series of
examples that show you how to combine the programming support util-
ities to perform more complex operations.

Utility Description

chex translate object module format

clabs generate absolute listings

clib build and maintains libraries

cobj examine objects modules

cvdwarf generate ELF/DWARF format
© 2008 COSMIC Software Programming Support 297

The chex Utility8

298
The chex Utility
You use the chex utility to translate executable images produced by
clnk to one of several hexadecimal interchange formats. These formats
are: Motorola S-record format, and Intel standard hex format. You can
also use chex to override text and data biases in an executable image or
to output only a portion of the executable.

The executable image is read from the input file <file>.

Command Line Options
chex accepts the following command line options, each of which is
described in detail below:

Chex Option Usage

Option Description

-a## the argument file is a considered as a pure binary file and
is the output address of the first byte.

-b## substract ## to any address before output.

chex [options] file
-a## absolute file start address
-b## address bias
-e## entry point address
-f? output format
-h suppress header
+h* specify header string
-m# maximum data bytes per line
-n*> output only named segments
-o* output file name
-p use paged address format
-pa use paged address for data
-pl## page number for linear mapping
-pn use paged address in bank only
-pp use paged address with mapping
-s output increasing addresses
-w output word addresses
-x*> exclude named segments
© 2008 COSMIC SoftwareProgramming Support

The chex Utility
-e## define ## as the entry point address encoded in the dedi-
cated record of the output format, if available.

-f? define output file format. Valid options are:

Default is to produced Motorola S-Records (-fm). Any other
letter will select the default format

-h do not output the header sequence if such a sequence
exists for the selected format.

+h* insert * in the header sequence if such a sequence exists
for the selected format.

-m# output # maximum data bytes per line. Default is to output
32 bytes per line.

-n*> output only segments whose name is equal to the string *.
Up to twenty different names may be specified on the com-
mand line. If there are several segments with the same
name, they will all be produced. This option is used in com-
bination with the -n option of the linker.

-o* write output module to file *. The default is STDOUT.

-p output addresses of banked segments using a paged for-
mat <page_number><logical_address>, instead of
the default format <physical>.

-pa output addresses of banked data segments using a paged
format <page_number><logical_address>, instead of
the default format <physical>.

Chex Option Usage (cont.)

Option Description

i Intel Hex Format

m Motorola S19 format

2 Motorola S2 format

3 Motorola S3 format
© 2008 COSMIC Software Programming Support 299

The chex Utility8

300
Return Status
chex returns success if no error messages are printed; that is, if all
records are valid and all reads and writes succeed. Otherwise it returns
failure.

Examples
The file hello.c, consisting of:

when compiled produces the following the following Motorola
S-record format:

S00A000068656C6C6F2E6F44
S1110000020068656C6C6F20776F726C640090
S9030000FC

-pl## specify the page value of the segment localized between
0x8000 and 0xc000 when using a linear non-banked
application. This option enforces a paged format for this
segment.

-pn behaves as -p but only when logical address is inside the
banked area. This option has to be selected when produc-
ing an hex file for the Noral debugger.

-pp behaves as -p but uses paged addresses for all banked
segments, mapped or unmapped. This option has to be
selected when producing an hex file for Promic tools.

-s sort the output addresses in increasing order.

-w output word addresses. Addresses must be aligned on
even addresses. This option is useful for word processor
type.

-x*> do not output segments whose name is equal to the string *.
Up to twenty different names may be specified on the com-
mand line. If there are several segments with the same
name, they will not all be output.

Chex Option Usage (cont.)

Option Description

char *p = {“hello world”};

chex hello.o
© 2008 COSMIC SoftwareProgramming Support

The chex Utility
and the following Intel standard hex format:

:0E000000020068656C6C6F20776F726C640094
:00000001FF

chex -fi hello.o
© 2008 COSMIC Software Programming Support 301

The clabs Utility8

302
The clabs Utility
clabs processes assembler listing files with the associated executable
file to produce listing with updated code and address values.

clabs decodes an executable file to retrieve the list of all the files which
have been used to create the executable. For each of these files, clabs
looks for a matching listing file produced by the compiler (“.ls” file). If
such a file exists, clabs creates a new listing file (“.la” file) with abso-
lute addresses and code, extracted from the executable file.

To be able to produce any results, the compiler must have been used
with the ‘-l’ option.

Command Line Options
clabs accepts the following command line options, each of which is
described in detail below.

Clabs Option Usage

Option Description

-a process also files located in libraries. Default is to process
only all the files of the application.

-cl* specify a path for the listing files. By default, listings are cre-
ated in the same directory than the source files.

-l process files in the current directory only. Default is to proc-
ess all the files of the application.

clabs [options] file
-a process also library files
-cl* listings files
-l restrict to local directory
-p use paged address format
-pn use paged address in bank only
-pp use paged address with mapping
-r* relocatable listing suffix
-s* absolute listing suffix
-v echo processed file names
© 2008 COSMIC SoftwareProgramming Support

The clabs Utility
<file> specifies one file, which must be in executable format.

Return Status
clabs returns success if no error messages are printed; that is, if all reads
and writes succeed. An error message is output if no relocatable listing
files are found. Otherwise it returns failure.

Examples
The following command line:

will output:

crts.ls
acia.ls
vector.ls

and creates the following files:

crts.la
acia.la

-p output addresses of banked segments using a paged for-
mat <page_number><logical_address>, instead of
the default format <physical>.

-pn behaves as -p but only when logical address is inside the
banked area.

-pp behaves as -p but uses paged addresses for all banked
segments, mapped or unmapped.

-r* specify the input suffix, including or not the dot ‘.’ character.
Default is “.ls”

-s* specify the output suffix, including or not the dot ‘.’ charac-
ter. Default is “.la”

-v be verbose. The name of each module of the application is
output to STDOUT.

Clabs Option Usage (cont.)

Option Description

clabs -v acia.sm8
© 2008 COSMIC Software Programming Support 303

The clabs Utility8

304
vector.la

The following command line:

will look for files with the suffix “.lst”:

The following command line:

will generate:

crts.lx
acia.lx
vector.lx

clabs -r.lst acia.sm8

clabs -s.lx acia.sm8
© 2008 COSMIC SoftwareProgramming Support

The clib Utility
The clib Utility
clib builds and maintains object module libraries. clib can also be used
to collect arbitrary files in one place. <library> is the name of an exist-
ing library file or, in the case of replace or create operations, the name
of the library to be constructed.

Command Line Options
clib accepts the following command line options, each of which is
described in detail below:

Clib Option Usage

Option Description

-a include absolute symbols in the library symbol table.

-c create a library containing <files>. Any existing <library> of
the same name is removed before the new one is created.

-d delete from the library the zero or more files in <files>.

-e accept module with no symbol.

-i* take object files from a list *. You can put several files per
line or put one file per line. Each lines can include com-
ments. They must be prefixed by the ‘#’ character. If the
command line contains <files>, then <files> will be also
added to the library.

clib [options] <library> <files>
-a accept absolute symbols
-c create a new library
-d delete modules from library
-e accept empty module
-i* object list filename
-l load all library at link
-r replace modules in library
-s list symbols in library
-t list files in library
-v be verbose
-x extract modules from library
© 2008 COSMIC Software Programming Support 305

The clib Utility8

306
At most one of the options -[c r t x] may be specified at the same time.
If none of these is specified, the -t option is assumed.

Return Status
clib returns success if no problems are encountered. Otherwise it
returns failure. After most failures, an error message is printed to
STDERR and the library file is not modified. Output from the -t, -s
options, and verbose remarks, are written to STDOUT.

Examples
To build a library and check its contents:

will output:

one.o
two.o
three.o

-l when a library is built with this flag set, all the modules of
the library will be loaded at link time. By default, the linker
only loads modules necessary for the application.

-r in an existing library, replace the zero or more files in
<files>. If no library <library> exists, create a library contain-
ing <files>. The files in <files> not present in the library are
added to it.

-s list the symbols defined in the library with the module name
to which they belong.

-t list the files in the library.

-v be verbose

-x extract the files in <files> that are present in the library into
discrete files with the same names. If no <files> are speci-
fied, all files in the library are extracted.

Clib Option Usage (cont.)

Option Description

clib -c libc one.o two.o three.o
clib -t libc
© 2008 COSMIC SoftwareProgramming Support

The clib Utility
To build a library from a list file:

where list contains:

files for the libc library
one.o
two.o
three.o
four.o
five.o

clib -ci list libc six.o seven.o
© 2008 COSMIC Software Programming Support 307

The cobj Utility8

308
The cobj Utility
You use cobj to inspect relocatable object files or executable. Such files
may have been output by the assembler or by the linker. cobj can be
used to check the size and configuration of relocatable object files or to
output information from their symbol tables.

Command Line Options
cobj accepts the following options, each of which is described in detail
below.

<file> specifies a file, which must be in relocatable format or executa-
ble format.

Cobj Option Usage

Option Description

-d output in hexadecimal the data part of each section.

-h display all the fields of the object file header.

-n display the name, size and attribute of each section.

-o* write output module to file *. The default is STDOUT.

-r output in symbolic form the relocation part of each section.

-s display the symbol table.

-v display seek addresses inside the object file.

-x display the debug symbol table.

cobj [options] file
-d output data flows
-h output header
-n output sections
-o* output file name
-r output relocation flows
-s output symbol table
-v display file addresses
-x output debug symbols
© 2008 COSMIC SoftwareProgramming Support

The cobj Utility
If none of these options is specified, the default is -hns.

Return Status
cobj returns success if no diagnostics are produced (i.e. if all reads are
successful and all file formats are valid).

Examples
For example, to get the symbol table:

symbols:

_main: 0000003e section .text defined public
_outch: 0000001b section .text defined public
_buffer: 00000000 section .bss defined public
_ptecr: 00000000 section .bsct defined public zpage
_getch: 00000000 section .text defined public
_ptlec: 00000002 section .bsct defined public zpage
_recept: 00000028 section .text defined public

The information for each symbol is: name, address, section to which it
belongs and attribute.

cobj -s acia.o
© 2008 COSMIC Software Programming Support 309

The cvdwarf Utility8

310
The cvdwarf Utility
cvdwarf is the utility used to convert a file produced by the linker into
an ELF/DWARF format file.

Command Line Options
cvdwarf accepts the following options, each of which is described in
detail below.

<file> specifies a file, which must be in executable format.

Cvdwarf Option usage

Option Description

-bp# start address of the banking page.

-bs# set the window shift to #, which implies that the number of
bytes in a window is 2**#.

THESE FLAGS ARE CURRENTLY ONLY MEANINGFULL
FOR THE HC11K4.

+dup handle duplicate header files individually. By default, the
converter assumes that all header files sharing the same
name do have the same content or with conditional behav-
iours.

-loc location lists are used in place of location expressions
whenever the object whose location is being described can
change location during its lifetime. THIS POSSIBILITY IS
NOT SUPPORTED BY ALL DEBUGGERS.

cvdwarf [options] file
-bp## bank start address
-bs# bank shift
+dup accept duplicate headers
-loc complex location description
-o* output file name
+page# define pagination (HC12/HCS08 only)
-rb reverse bitfield (L to R)
-so add stack offset
-v be verbose
© 2008 COSMIC SoftwareProgramming Support

The cvdwarf Utility
-o* where * is a filename. * is used to specify the output file for
cvdwarf. By default, if -o is not specified, cvdwarf send its
output to the file whose name is obtained from the input file
by replacing the filename extension with “.elf”.

+page# output addresses in paged mode where # specifies the
page type:

By default, the banked mode is disable.

THIS FLAG IS CURRENTLY ONLY MEANINGFULL FOR
THE HC12/HCS12 and HCS08.

THIS FLAG IS NOT TO BE USED ON ANY S12X PAGING,
BASED ON THE EXISTING GLOBAL ADDRESS MODE.

-rb reverse bitfield from left to right.

-so add stack offset. This option has to be selected when using
debuggers using the SP value directly.

THIS FLAG IS CURRENTLY ONLY MEANINGFULL FOR
THE HC08/HCS08.

Cvdwarf Option usage (cont.)

Option Description

Valid usage for Paging Window

1 for
banked
code

All HC12, HCS12 and
HCS08 paged deriv-
atives when Code
Paging used

FLASH 0x8000 to
0xbfff

2 for
banked
data

Only for HC12A4
when Data Paging
used

RAM 0x7000 to
0x7fff

3 both
(code
and
data)

Only for HC12A4
when Data and Code
Paging used

FLASH 0x8000 to
0xbfff
RAM 0x7000 to
0x7fff
© 2008 COSMIC Software Programming Support 311

The cvdwarf Utility8

312
Return Status
cvdwarf returns success if no problems are encountered. Otherwise it
returns failure.

Examples
Under MS/DOS, the command could be:

and will produce: C:\test\acia.elf

and the following command:

will produce: file

Under UNIX, the command could be:

and will produce: test/acia.elf

-v select verbose mode. cvdwarf will display information about
its activity.

Cvdwarf Option usage (cont.)

Option Description

cvdwarfC:\test\acia.sm8

cvdwarf -o file C:\test\acia.sm8

cvdwarf /test/acia.sm8
© 2008 COSMIC SoftwareProgramming Support

APPENDIX

A

Compiler Error
Messages

This appendix lists the error messages that the compiler may generate in
response to errors in your program, or in response to problems in your
host system environment, such as inadequate space for temporary inter-
mediate files that the compiler creates.

The first pass of the compiler generally produces all user diagnostics.
This pass deals with # control lines and lexical analysis, and then with
everything else having to do with semantics. Only machine-dependent
extensions are diagnosed in the code generator pass. If a pass produces
diagnostics, later passes will not be run.

Any compiler message containing an exclamation mark ! or the word
‘PANIC’ indicates that the compiler has detected an inconsistent inter-
nal state. Such occurrences are uncommon and should be reported to
the maintainers.

• Parser (cpstm8) Error Messages

• Code Generator (cgstm8) Error Messages

• Assembler (castm8) Error Messages

• Linker (clnk) Error Messages
© 2008 COSMIC Software Compiler Error Messages 313

Parser (cpstm8) Error MessagesA

314
Parser (cpstm8) Error Messages
<name> not a member - field name not recognized for this struct/
union

<name> not an argument - a declaration has been specified for an
argument not specified as a function parameter

<name> undefined - a function or a variable is never defined

FlexLM <message>- an error is detected by the license manager

_asm string too long - the string constant passed to _asm is larger than
255 characters

ambiguous space modifier - a space modifier attempts to redefine an
already specified modifier

array size unknown - the sizeof operator has been applied to an array
of unknown size

bad # argument in macro <name> - the argument of a # operator in a
#define macro is not a parameter

bad # directive: <name> - an unknown #directive has been specified

bad # syntax - # is not followed by an identifier

bad ## argument in macro <name> - an argument of a ## operator in
a #define macro is missing

bad #asm directive - a #asm directive is not entered at a valid declara-
tion or instruction boundary

bad #define syntax - a #define is not followed by an identifier

bad #elif expression - a #elif is not followed by a constant expression

bad #else - a #else occurs without a previous #if, #ifdef, #ifndef or #elif

bad #endasm directive - a #endasm directive is not closing a previous
#asm directive
© 2008 COSMIC SoftwareCompiler Error Messages

Parser (cpstm8) Error Messages
bad #endif - a #endif occurs without a previous #if, #ifdef, #ifndef, #elif
or #else

bad #if expression - the expression part of a #if is not a constant
expression

bad #ifdef syntax - extra characters are found after the symbol name

bad #ifndef syntax - extra characters are found after the symbol name

bad #include syntax - extra characters are found after the file name

bad #pragma attribute directive - syntax for the #pragma attribute
directive is incorrect

bad #pragma section directive - syntax for the #pragma section direc-
tive is incorrect

bad #pragma space directive - syntax for the #pragma space directive
is incorrect

bad #pragma unroll directive - syntax for the #pragma unroll direc-
tive is incorrect

bad #undef syntax - #undef is not followed by an identifier

bad _asm() argument type - the first argument passed to _asm is miss-
ing or is not a character string

bad alias expression - alias definition is not a valid expression

bad alias value - alias definition is not a constant expression

bad bit number - a bit number is not a constant between 0 and 7

bad character <character> - <character> is not part of a legal token

bad defined syntax - the defined operator must be followed by an iden-
tifier, or by an identifier enclosed in parenthesis

bad function declaration - function declaration has not been termi-
nated by a right parenthesis
© 2008 COSMIC Software Compiler Error Messages 315

Parser (cpstm8) Error MessagesA

316
bad integer constant - an invalid integer constant has been specified

bad invocation of macro <name> - a #define macro defined without
arguments has been invoked with arguments

bad macro argument - a parameter in a #define macro is not an identi-
fier

bad macro argument syntax - parameters in a #define macro are not
separated by commas

bad proto argument type - function prototype argument is declared
without an explicit type

bad real constant - an invalid real constant has been specified

bad space modifier - a modifier beginning with a @ character is not
followed by an identifier

bad structure for return - the structure for return is not compatible
with that of the function

bad struct/union operand - a structure or an union has been used as
operand for an arithmetic operator

bad symbol definition - the syntax of a symbol defined by the -d
option on the command line is not valid

bad void argument - the type void has not been used alone in a proto-
typed function declaration

can't create <name> - file <name> cannot be created for writing

can't open <name> - file <name> cannot be opened for reading

can't redefine macro <name> - macro <name> has been already
defined

can't undef macro <name> - a #undef has been attempted on a prede-
fined macro
© 2008 COSMIC SoftwareCompiler Error Messages

Parser (cpstm8) Error Messages
compare out of range - a comparison is detected as beeing always true
or always false (+strict)

const assignment - a const object is specified as left operand of an
assignment operator

constant assignment in a test - an assignment operator has been used
in the test expression of an if, while, do, for statements or a conditional
expression (+strict)

duplicate #pragma attibute name <name> - two objects have been
declared with the same <name> in #pragma attribute directives

duplicate case - two case labels have been defined with the same value
in the same switch statement

duplicate default - a default label has been specified more than once in
a switch statement

embedded usage of tag name <name> - a structure/union definition
contains a reference to itself.

enum size unknown - the range of an enumeration is not available to
choose the smallest integer type

exponent overflow in real - the exponent specified in a real constant is
too large for the target encoding

file too large for label information - the source file is producing too
many labels in the code and debug parts for the coding restrictions

float value too large for integer cast - a float constant is too large to
be casted in an integer (+strict)

hexadecimal constant too large - an hexadecimal constant is too large
to be represented on an integer

illegal storage class - storage class is not legal in this context

illegal type specification - type specification is not recognizable
© 2008 COSMIC Software Compiler Error Messages 317

Parser (cpstm8) Error MessagesA

318
illegal void operation - an object of type void is used as operand of an
arithmetic operator

illegal void usage - an object of type void is used as operand of an
assignment operator

implicit int type in argument declaration - an argument has been
declared without any type (+strict)

implicit int type in global declaration - a global variable has been
declared without any type (+strict)

implicit int type in local declaration - a local variable has been
declared without any type (+strict)

implicit int type in struct/union declaration - a structure or union
field has been declared without any type (+strict)

incompatible argument type - the actual argument type does not
match the corresponding type in the prototype

incompatible compare type - operands of comparison operators must
be of scalar type

incompatible operand types - the operands of an arithmetic operator
are not compatible

incompatible pointer assignment - assigned pointers must have the
same type, or one of them must be a pointer to void

incompatible pointer operand - a scalar type is expected when opera-
tors += and -= are used on pointers

incompatible pointer operation - pointers are not allowed for that
kind of operation

incompatible pointer types - the pointers of the assignment operator
must be of equal or coercible type

incompatible return type - the return expression is not compatible
with the declared function return type
© 2008 COSMIC SoftwareCompiler Error Messages

Parser (cpstm8) Error Messages
incompatible struct/union assignment - a structure or an union has
been used as operand for an assignement operator and the other operand
is not a structure or an union

incompatible struct/union operation - a structure or an union has
been used as operand of an arithmetic operator

incompatible types in struct/union assignment - structure or union
types must be identical for assignment

incomplete #elif expression - a #elif is followed by an incomplete
expression

incomplete #if expression - a #if is followed by an incomplete expres-
sion

incomplete type - structure type is not followed by a tag or definition

incomplete type for debug information - a structure or union is not
completely defined in a file compiled with the debug option set

integer constant too large - a decimal constant is too large to be repre-
sented on an integer

invalid #pragma attribute syntax - a syntax error has been detected in
a #pragma attribute directive

invalid ? test expression - the first expression of a ternary operator
(? :) is not a testable expression

invalid address expression - the “address of” operator has been
applied to a rvalue expression

invalid address operand - the “address of” operator has been applied
to a register variable

invalid address type - the “address of” operator has been applied to a
bitfield

invalid alias - an alias has been applied to an extern object
© 2008 COSMIC Software Compiler Error Messages 319

Parser (cpstm8) Error MessagesA

320
invalid arithmetic operand - the operands of an arithmetic operator
are not of the same or coercible types

invalid array dimension - an array has been declared with a dimension
which is not a constant expression

invalid binary number - the syntax for a binary constant is not valid

invalid bit assignment - the expression assigned to a bit variable must
be scalar

invalid bit initializer - the expression initializing a bit variable must be
scalar

invalid bitfield size - a bitfield has been declared with a size larger than
its type size

invalid bitfield type - a type other than int, unsigned int, char,
unsigned char has been used in a bitfield.

invalid break - a break may be used only in while, for, do, or switch
statements

invalid case - a case label has been specified outside of a switch state-
ment

invalid case operand - a case label has to be followed by a constant
expression

invalid cast operand - the operand of a cast operator in not an expres-
sion

invalid cast type - a cast has been applied to an object that cannot be
coerced to a specific type

invalid conditional operand - the operands of a conditional operator
are not compatible

invalid constant expression - a constant expression is missing or is not
reduced to a constant value
© 2008 COSMIC SoftwareCompiler Error Messages

Parser (cpstm8) Error Messages
invalid continue - a continue statement may be used only in while, for,
or do statements

invalid default - a default label has been specified outside of a switch
statement

invalid do test type - the expression of a do ... while() instruction is not
a testable expression

invalid expression - an incomplete or ill-formed expression has been
detected

invalid external initialization - an external object has been initialized

invalid floating point operation - an invalid operator has been applied
to floating point operands

invalid for test type - the second expression of a for(;;) instruction is
not a testable expression

invalid function member - a function has been declared within a struc-
ture or an union

invalid function type - the function call operator () has been applied to
an object which is not a function or a pointer to a function

invalid if test type - the expression of an if () instruction is not a testa-
ble expression

invalid indirection operand - the operand of unary * is not a pointer

invalid line number - the first parameter of a #line directive is not an
integer

invalid local initialization - the initialization of a local object is incom-
plete or ill-formed

invalid lvalue - the left operand of an assignment operator is not a vari-
able or a pointer reference
© 2008 COSMIC Software Compiler Error Messages 321

Parser (cpstm8) Error MessagesA

322
invalid narrow pointer cast - a cast operator is attempting to reduce
the size of a pointer

invalid operand type - the operand of a unary operator has an incom-
patible type

invalid pointer cast operand - a cast to a function pointer has been
applied to a pointer that is not a function pointer

invalid pointer initializer - initializer must be a pointer expression or
the constant expression 0

invalid pointer operand - an expression which is not of integer type
has been added to a pointer

invalid pointer operation - an illegal operator has been applied to a
pointer operand

invalid pointer types - two incompatible pointers have been sub-
stracted

invalid shift count type - the right expression of a shift operator is not
an integer

invalid sizeof operand type - the sizeof operator has been applied to a
function

invalid space for argument <name> - an argument has been declared
with a space modifier incompatible with the stack allocation

invalid space for function - a function has been declared with a space
modifier incompatible with the function allocation

invalid space for local <name> - a local variable has been declared
with a space modifier incompatible with the stack allocation

invalid storage class - storage class is not legal in this context

invalid struct/union operation - a structure or an union has been used
as operand of an arithmetic operator
© 2008 COSMIC SoftwareCompiler Error Messages

Parser (cpstm8) Error Messages
invalid switch test type - the expression of a switch () instruction must
be of integer type

invalid typedef usage - a typedef identifier is used in an expression

invalid void pointer - a void pointer has been used as operand of an
addition or a substraction

invalid while test type - the expression of a while () instruction is not a
testable expression

misplaced #pragma section directive - a #pragma section directive
has been placed inside the body of a C function

misplaced #pragma atrtibute name - a #pragma attribute directive is
not declaring any object

missing ## argument in macro <name> - an argument of a ## opera-
tor in a #define macro is missing

missing ‘>’ in #include - a file name of a #include directive begins
with ‘<’ and does not end with ‘>’

missing) in defined expansion - a ‘(’ does not have a balancing ‘)’ in a
defined operator

missing ; in argument declaration - the declaration of a function argu-
ment does not end with ‘;’

missing ; in local declaration - the declaration of a local variable does
not end with ‘;’

missing ; in member declaration - the declaration of a structure or
union member does not end with ‘;’

missing ? test expression - the test expression is missing in a ternary
operator (? :)

missing _asm() argument - the _asm function needs at least one argu-
ment
© 2008 COSMIC Software Compiler Error Messages 323

Parser (cpstm8) Error MessagesA

324
missing argument - the number of arguments in the actual function call
is less than that of its prototype declaration

missing argument for macro <name> - a macro invocation has fewer
arguments than its corresponding declaration

missing argument name - the name of an argument is missing in a pro-
totyped function declaration

missing array subscript - an array element has been referenced with
an empty subscript

missing do test expression - a do ... while () instruction has been speci-
fied with an empty while expression

missing enumeration member - a member of an enumeration is not an
identifier

missing explicit return - a return statement is not ending a non-void
function (+strict)

missing exponent in real - a floating point constant has an empty expo-
nent after the ‘e’ or ‘E’ character

missing expression - an expression is needed, but none is present

missing file name in #include - a #include directive is used, but no file
name is present

missing goto label - an identifier is needed after a goto instruction

missing if test expression - an if () instruction has been used with an
empty test expression

missing initialization expression - a local variable has been declared
with an ending ‘=’ character not followed by an expression

missing initializer - a simple object has been declared with an ending
‘=’ character not followed by an expression

missing line number - a line number is missing in a #line directive
© 2008 COSMIC SoftwareCompiler Error Messages

Parser (cpstm8) Error Messages
missing local name - a local variable has been declared without a name

missing member declaration - a structure or union has been declared
without any member

missing member name - a structure or union member has been
declared without a name

missing name in declaration - a variable has been declared without a
name

missing prototype - a function has been used without a fully proto-
typed declaration (+strict)

missing prototype for inline function - an inline function has been
declared without a fully prototyped syntax

missing return expression - a simple return statement is used in a non-
void function (+strict)

missing switch test expression - an expression in a switch instruction
is needed, but is not present

missing while - a ‘while’ is expected and not found

missing while test expression - an expression in a while instruction is
needed, but none is present

missing : - a ‘:’ is expected and not found

missing ; - a ‘;’ is expected and not found. The parser reports such an
error on the previous element as most of the time the ; is missing at the
end of the declaration. When this error occurs on top of a file or just
after a file include, the line number reported may not match the exact
location where the problem is detected.

missing (- a ‘(’ is expected and not found

missing) - a ‘)’ is expected and not found

missing] - a ‘]’ is expected and not found
© 2008 COSMIC Software Compiler Error Messages 325

Parser (cpstm8) Error MessagesA

326
missing { - a ‘{’ is expected and not found

missing } - a ‘}’ is expected and not found

missing } in enum definition - an enumeration list does not end with a
‘}’ character

missing } in struct/union definition - a structure or union member list
does not end with a ‘}’ character

redeclared #pragma attribute name <name> - a #pragma attribute
object is already declared by another #pragma attribute directive

redeclared argument <name> - a function argument has conflicting
declarations

redeclared enum member <name> - an enum element is already
declared in the same scope

redeclared external <name> - an external object or function has con-
flicting declarations

redeclared local <name> - a local is already declared in the same
scope

redeclared proto argument <name> - an identifier is used more than
once in a prototype function declaration

redeclared typedef <name> - a typedef is already declared in the same
scope

redefined alias <name> - an alias has been applied to an already
declared object

redefined label <name> - a label is defined more than once in a func-
tion

redefined member <name> - an identifier is used more than once in
structure member declaration

redefined tag <name> - a tag is specified more than once in a given
scope
© 2008 COSMIC SoftwareCompiler Error Messages

Parser (cpstm8) Error Messages
repeated type specification - the same type modifier occurs more than
once in a type specification

scalar type required - type must be integer, floating, or pointer

shift count out of range - a constant shift count is larger than the
shifted object size (+strict)

size unknown - an attempt to compute the size of an unknown object
has occurred

space attribute conflict - a space modifier attempts to redefine an
already specified modifier

space conflict with #pragma attribute - a space modifier declared
with a #pragma attribute mismatches the space modifier specified in
the object declaration

stack attibute conflict on cast - a cast is attempting to change the
@stack/@nostack attribute of an object (+strict)

string too long - a string is used to initialize an array of characters
shorter than the string length

struct/union size unknown - an attempt to compute a structure or
union size has occurred on an undefined structure or union

syntax error - an unexpected identifier has been read

token overflow - an expression is too complex to be parsed

too many argument - the number of actual arguments in a function
declaration does not match that of the previous prototype declaration

too many arguments for macro <name> - a macro invocation has
more arguments than its corresponding macro declaration

too many initializers - initialization is completed for a given object
before initializer list is exhausted

too many spaces modifiers - too many different names for ‘@’ modifi-
ers are used
© 2008 COSMIC Software Compiler Error Messages 327

Parser (cpstm8) Error MessagesA

328
truncating assignment - the right operand of an assignment is larger
than the left operand (+strict)

truncating constant cast - a cast is attempting to narrow down the
value of a constant (+strict)

unbalanced ‘ - a character constant does not end with a simple quote

unbalanced “ - a string constant does not end with a double quote

<name> undefined - an undeclared identifier appears in an expression

undefined label <name> - a label is never defined

undefined struct/union - a structure or union is used and is never
defined

unexpected end of file - last declaration is incomplete

unexpected return expression - a return with an expression has been
used within a void function

unknown enum definition - an enumeration has been declared with no
member

unknown structure - an attempt to initialize an undefined structure has
been done

unknown union - an attempt to initialize an undefined union has been
done

unreachable code - a code sequence cannot be accessed (+strict)

value out of range - a constant is assigned to a variable too small to
represent its value (+strict)

variable arguments in nostack mode - a function has been declared
with the ... syntax and the@nostack modifier (+strict)

zero divide - a divide by zero was detected

zero modulus - a modulus by zero was detected
© 2008 COSMIC SoftwareCompiler Error Messages

Code Generator (cgstm8) Error Messages
Code Generator (cgstm8) Error Messages
bad builtin - the @builtin type modifier can be used only on functions

bad @interrupt usage - the @interrupt type modifier can only be used
on functions.

invalid indirect call - a function has been called through a pointer with
more than one char or int argument, or is returning a structure.

redefined space - the version of cpstm8 you used to compile your pro-
gram is incompatible with cgstm8.

unknown space - you have specified an invalid space modifier @xxx

unknown space modifier - you have specified an invalid space modi-
fier @xxx

PANIC ! bad input file - cannot read input file

PANIC ! bad output file - cannot create output file

PANIC ! can't write - cannot write output file

All other PANIC ! messages should never happen. If you get such a
message, please report it with the corresponding source program to
COSMIC.
© 2008 COSMIC Software Compiler Error Messages 329

Assembler (castm8) Error MessagesA

330
Assembler (castm8) Error Messages
The following error messages may be generated by the assembler. Note
that the assembler's input is machine-generated code from the compiler.
Hence, it is usually impossible to fix things ‘on the fly’. The problem
must be corrected in the source, and the offending program(s) recom-
piled.

bad .source directive - a .source directive is not followed by a string
giving a file name and line numbers

bad addressing mode - an invalid addressing mode have been con-
structed

bad argument number- a parameter sequence \n uses a value negative
or greater than 9

bad character constant - a character constant is too long for an expres-
sion

bad comment delimiter- an unexpected field is not a comment

bad constant - a constant uses illegal characters

bad else - an else directive has been found without a previous if direc-
tive

bad endif - an endif directive has been found without a previous if or
else directive

bad file name - the include directive operand is not a character string

bad index register - an invalid register has been used in an indexed
addressing mode

bad register - an invalid register has been specified as operand of an
instruction

bad relocatable expression - an external label has been used in either a
constant expression, or with illegal operators
© 2008 COSMIC SoftwareCompiler Error Messages

Assembler (castm8) Error Messages
bad string constant - a character constant does not end with a single or
double quote

bad symbol name: <name> - an expected symbol is not an identifier

can't create <name> - the file <name> cannot be opened for writing

can't open <name> - the file <name> cannot be opened for reading

can't open source <name> - the file <name> cannot be included

cannot include from a macro - the directive include cannot be speci-
fied within a macro definition

cannot move back current pc - an org directive has a negative offset

illegal size - the size of a ds directive is negative or zero

missing label - a label must be specified for this directive

missing operand - operand is expected for this instruction

missing register - a register is expected for this instruction

missing string - a character string is expected for this directive

relocatable expression not allowed - a constant is needed

section name <name> too long - a section name has more than 15
characters

string constant too long - a string constant is longer than 255 charac-
ters

symbol <name> already defined - attempt to redefine an existing
symbol

symbol <name> not defined - a symbol has been used but not declared

syntax error - an unexpected identifier or operator has been found
© 2008 COSMIC Software Compiler Error Messages 331

Assembler (castm8) Error MessagesA

332
too many arguments - a macro has been invoked with more than 9
arguments

too many back tokens - an expression is too complex to be evaluated

unclosed if - an if directive is not ended by an else or endif directive

unknown instruction <name> - an instruction not recognized by the
processor has been specified

value too large - an operand is too large for the instruction type

zero divide - a divide by zero has been detected
© 2008 COSMIC SoftwareCompiler Error Messages

Linker (clnk) Error Messages
Linker (clnk) Error Messages
-a not allowed with -b or -o - the after option cannot be specified if
any start address is specified.

+def symbol <symbol> multiply defined - the symbol defined by a
+def directive is already defined.

bad address (<value>) for zero page symbol <name> - a symbol
declared in the zero page is allocated to an address larger than 8 bits.

bad file format - an input file has not an object file format.

bad number in +def - the number provided in a +def directive does not
follow the standard C syntax.

bad number in +spc <segment> - the number provided in a +spc
directive does not follow the standard C syntax.

bad processor type - an object file has not the same configuration
information than the others.

bad reloc code - an object file contains unexpected relocation informa-
tion.

bad section name in +def - the name specified after the ‘@’ in a +def
directive is not the name of a segment.

can't create map file <file> - map file cannot be created.

can't create <file> - output file cannot be created.

can't locate .text segment for initialization - initialized data segments
have been found but no host segment has been specified.

can't locate shared segment - shared datas have been found but no
host segment has been specified.

can't open file <file> - input file cannot be found.
© 2008 COSMIC Software Compiler Error Messages 333

Linker (clnk) Error MessagesA

334
file already linked - an input file has already been processed by the
linker.

function <function> is recursive - a nostack function has been
detected as recursive and cannot be allocated.

function <function> is reentrant - a function has been detected as
reentrant. The function is both called in an interrupt function and in the
main code.

incomplete +def directive - the +def directive syntax is not correct.

incomplete +seg directive - the +seg directive syntax is not correct.

incomplete +spc directive - the +spc directive syntax is not correct.

init segment cannot be initialized - the host segment for initialization
cannot be itself initialized.

invalid @ argument - the syntax of an optional input file is not correct.

invalid -i option - the -i directive is followed by an unexpected charac-
ter.

missing command file - a link command file must be specified on the
command line.

missing output file - the -o option must be specified.

missing '=' in +def - the +def directive syntax is not correct.

missing '=' in +spc <segment> - the +spc directive syntax is not cor-
rect.

named segment <segment> not defined - a segment name does not
match already existing segments.

no default placement for segment <segment> - a segment is missing
-a or -b option.
© 2008 COSMIC SoftwareCompiler Error Messages

Linker (clnk) Error Messages
prefixed symbol <name> in conflict - a symbol beginning by ‘f_’ (for
a banked function) also exists without the ‘f’ prefix.

read error - an input object file is corrupted

segment <segment> and <segment> overlap - a segment is overlap-
ping an other segment.

segment <segment> size overflow - the size of a segment is larger than
the maximum value allowed by the -m option.

shared segment not empty - the host segment for shared data is not
empty and cannot be used for allocation.

symbol <symbol> multiply defined - an object file attempts to rede-
fine a symbol.

symbol <symbol> not defined - a symbol has been referenced but
never defined.

unknown directive - a directive name has not been recognized as a
linker directive.
© 2008 COSMIC Software Compiler Error Messages 335

APPENDIX

B

Modifying Compiler
Operation

This chapter tells you how to modify compiler operation by making
changes to the standard configuration file. It also explains how to create
your own programmable options” which you can use to modify com-
piler operation from the cxstm8.cxf.
© 2008 COSMIC Software Modifying Compiler Operation 337

The Configuration FileB

338
The Configuration File
The configuration file is designed to define the default options and
behaviour of the compiler passes. It will also allow the definition of
programmable options thus simplifying the compiler configuration. A
configuration file contains a list of options similar to the ones accepted
for the compiler driver utility cxstm8.

These options are described in Chapter 4, “Using The Compiler”.
There are two differences: the option -f cannot be specified in a config-
uration file, and the extra -m option has been added to allow the defini-
tion of a programmable compiler option, as described in the next
paragraph.

The contents of the configuration file cxstm8.cxf as provided by the
default installation appears below:

CONFIGURATION FILE FOR STM8 COMPILER
Copyright (c) 2008 by COSMIC Software
#
-pu # unsigned char
-ppb # pack local bit variables
-i c:\cx32\hstm8 # include path
#
-m debug:x # debug: produce debug info
-m compact:,,f7 # factorize code seq of 7 bytes min
-m nobss:,bss # nobss: do not use bss
-m nocst:,ct # nocst: constant in text section
-m nocross:,nc # functions do not cross boundaries
-m proto:p # proto: enable prototype checking
-m rev:rb # rev: reverse bit field order
-m strict:ck # strict: enforce type checking
-m split:,sf # functions in different sections
-m mods:hmods.h # stack model
-m modsl:hmodsl.h # stack long model
-m mods0:hmods0.h # stack model 64K
-m modsl0:hmodsl0.h # stack long model 64K
-m warn:w1 # warn: enable warnings

The following command line:

cxstm8 hello.c
© 2008 COSMIC SoftwareModifying Compiler Operation

The Configuration File
in combination with the above configuration file directs the cxstm8
compiler to execute the following commands:

cpstm8 -o \2.cx1 -u -i\cosmic\hstm8 hello.c
cgstm8 -o \2.cx2 \2.cx1
costm8 -o \2.cx1 \2.cx2
castm8 -o hello.o -i\cosmic\hstm8 \2.cx1
© 2008 COSMIC Software Modifying Compiler Operation 339

Changing the Default OptionsB

340
Changing the Default Options
To change the combination of options that the compiler will use, edit
the configuration file and add your specific options using the -p (for the
parser), -g (for the code generator), -o (for the optimizer) and -a (for the
assembler) options. If you specify an invalid option or combination of
options, compilation will not proceed beyond the step where the error
occurred. You may define up to 60 such options.

Creating Your Own Options
To create a programmable option, edit the configuration file and define
the parametrable option with the -m* option. The string * has the fol-
lowing format:

name:popt,gopt,oopt,aopt,exclude...

The first field defines the option name and must be ended by a colon
character ‘:’. The four next fields describe the effect of this option on
the four passes of the compiler, respectively the parser, the generator,
the optimizer and the assembler. These fields are separated by a comma
character ‘,’. If no specific option is needed on a pass, the field has to be
specified empty. The remaining fields, if specified, describe a exclusive
relationship with other defined options. If two exclusive options are
specified on the command line, the compiler will stop with an error
message. You may define up to 20 programmable options. At least one
field has to be specified. Empty fields need to be specified only if a use-
ful field has to be entered after.

In the following example:

-m dl1:l,dl1,,,dl2# dl1: line option 1
-m dl2:l,dl2,,,dl1# dl1: line option 2

the two options dl1 and dl2 are defined. If the option +dl1 is specified
on the compiler command line, the specific option -l will be used for the
parser and the specific option -dl1 will be used for the code generator.
No specific option will be used for the optimizer and for the assembler.
The option dl1 is also declared to be exclusive with the option dl2,
meaning that dl1 and dl2 will not be allowed together on the compiler
command line. The option dl2 is defined in the same way.
© 2008 COSMIC SoftwareModifying Compiler Operation

Example
Example
The following command line

in combination with the previous configuration file directs the cxstm8
compiler to execute the following commands:

cpstm8-o \2.cx1 -u -i\cosmic\hstm8 hello.c
cgstm8 -o \2.cx2 -bss \2.cx1
costm8 -o \2.cx1 \2.cx2
castm8-o hello.o -i\cosmic\hstm8 \2.cx1

cxstm8 +nobss hello.c
© 2008 COSMIC Software Modifying Compiler Operation 341

APPENDIX

C

STM8 Machine Library
This appendix describes each of the functions in the Machine Library
(libm, using d_ prefix and libm0 for application smaller than 64K,
using c_ prefix). These functions provide the interface between the
STM8 microcontroller hardware and the functions required by the code
generator. They are described in reference form, and listed alphabeti-
cally.

Note that machine library functions handle values as follows:

• integer in the registers x or y.

• longs and floats in the four byte memory location c_lreg, (“float
register” or “long register” depending on context).

• pointer to long or float in registers x or y for @near pointers and in
x and the memory location c_x or y and the memory location c_y
for @far pointers.

The library functions using a pointer to far memory have a name begin-
ning with the ‘f’ letter, and the pointer is located in the pair composed
by the x register for the lower word, and the memory location c_x for
the upper byte. The following describes only the function handling data
in near memory. Their equivalent functions have the same description
except for the pointer location and size.
© 2008 COSMIC Software STM8 Machine Library 343

Machine Library - c_bitfw

c_bitfw

C

344
Description
Update an int bitfield in near memory

Syntax

Function
c_bitfw is used to update a 16 bits bitfield located in extended memory
by a new value located in the a and xl register pair. The value loaded
from extended memory is first and’ed with the mask located in the c_x
memory location. It is then or’ed with the value in the a and xl register
pair and stored back in memory.

Return Value
None.

; bitfield address in y
; mask in c_x and c_x+1
; value in a and xl

call c_bitfw
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_eewbf

c_eewbf

Description

Eeprom char bit field update

Syntax

Function
c_eewbf updates a char bit field (8 bits sized) located in eeprom with a
new value. The new value is in register x and is right justified. The byte
address in eeprom is in c_x and c_x+1, and the mask, giving the bit
field size and location, is in register a. The function waits for the time
necessary to program the new value.

See Also
c_eewstr

; value in x
; address in c_x and extension
; mask in a

call c_eewbfb
© 2008 COSMIC Software STM8 Machine Library 345

Machine Library - c_eewrc

c_eewrc

C

346
Description
Write a char in eeprom

Syntax

Function
c_eewrc writes a byte in eeprom. The new byte value is in the a register
and its address in eeprom is in x. The function tests if the erasure is nec-
essary, and do it only in that case. Then if the new value is different
from one in eeprom, the new byte is programmed. The function waits
for the time necessary to program correctly the byte. The function does
not test if the byte address is in the address range corresponding to the
existing eeprom.

See Also
c_eewrl, c_eewrw

; value in a
; address in x

call c_eewrc
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_eewrl

c_eewrl

Description

Write a long int in eeprom

Syntax

Function
c_eewrl writes a long int in eeprom. The new value is in the long regis-
ter, and its address in eeprom is in x. Each byte is programmed inde-
pendently by the c_eewrc function.

See Also
c_eewrc, c_eewrw

; value in c_lreg
; address in x

call c_eewrl
© 2008 COSMIC Software STM8 Machine Library 347

Machine Library - c_eewrw

c_eewrw

C

348
Description
Write a short int in eeprom

Syntax

Function
c_eewrw writes a short int in eeprom. The new value is on the stack,
and its address in eeprom is in x. Each byte is programmed independ-
ently by the c_eewrc function.

See Also
c_eewrc, c_eewrl

; value on the stack
; address in x

call c_eewrw
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_eewstr

c_eewstr

Description

Move a structure in eeprom

Syntax

Function
c_eewstr moves a structure into an eeprom memory location. Pointer to
source is in y, and pointer to destination is in x. The structure size is in
register a. Each byte is programmed independently by the c_eewrc
function.

See Also
c_eewbfb, c_eewrc

; source address in y
; destination address in x
; size in a

call c_eewstr
© 2008 COSMIC Software STM8 Machine Library 349

Machine Library - c_fadd

c_fadd

C

350
Description
Add float to float

Syntax

Function
c_fadd adds the float in float register to the float indicated by the x reg-
ister. No check is made for overflow.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
c_fsub

; left in float register
; pointer to right in x register

call c_fadd
; result in float register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_fcmp

c_fcmp

Description

Compare floats

Syntax

Function
c_fcmp compares the float in float register with the float pointered at by
the x register.

Return Value
The N and Z flags are set to reflect the value (left-right).

; left in float register
; pointer to right in x register

call c_fcmp
; result in flags
© 2008 COSMIC Software STM8 Machine Library 351

Machine Library - c_fdiv

c_fdiv

C

352
Description
Divide float by float

Syntax

Function
c_fdiv divides the float in float register by the float pointered at by the x
register.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

; left in float register
; pointer to right in x register

call c_fdiv
; result in float register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_fgadd

c_fgadd

Description

Add float to float in memory

Syntax

Function
c_fgadd adds the float in the float pointered at by the x register to the
float register.

Return Value
The resulting value is stored at the location pointered at by the x regis-
ter, meaning that the left operand is updated. Flags have no meaningful
value upon return.

See Also
c_fgsub

; pointer to left in x register
; right in float register

call c_fgadd
; result in memory
© 2008 COSMIC Software STM8 Machine Library 353

Machine Library - c_fgmul

c_fgmul

C

354
Description
Multiply float by float in memory

Syntax

Function
c_fgmul multiplies the float in float register by the float pointered at by
the x register.

Return Value
The resulting value is stored at the location pointered at by x. Flags
have no meaningful value upon return.

; pointer to left in x register
; right in float register

call c_fgmul
; result in memory
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_fgsub

c_fgsub

Description

Subtract float from float in memory

Syntax

Function
c_fgsub subtracts the float pointered at by the x register from the float in
float register. No check is made for overflow.

Return Value
The resulting value is stored at the location pointered at by x. Flags
have no meaningful value upon return.

See Also
c_fgadd

; pointer to left in x register
; right in float register

call c_fgsub
; result in memory
© 2008 COSMIC Software STM8 Machine Library 355

Machine Library - c_fmul

c_fmul

C

356
Description
Multiply float by float

Syntax

Function
c_fmul multiplies the float in float register by the float pointered at by
the x register.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return

; left in float register
; pointer to right in x register

call c_fmul
; result in float register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_fneg

c_fneg

Description

Negate a float

Syntax

Function
c_fneg negates the float pointered at by the float register.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

; operand in float register
call c_fneg

; result in operand
© 2008 COSMIC Software STM8 Machine Library 357

Machine Library - c_fsub

c_fsub

C

358
Description
Subtract float from float

Syntax

Function
c_fsub subtracts the float pointed to by the x register from the float in
float register. No check is made for overflow.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
c_fadd

; left in float register
; pointer to right in x register

call c_fsub
; result in float register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_ftoi

c_ftoi

Description

Convert float to integer

Syntax

Function
c_ftoi converts the float in float register to a two byte integer in the x
register. No check is made for overflow.

Return Value
The resulting value is in x. Flags have no meaningful value upon return.

See Also
c_ftol, c_itof, c_itol, c_ltof

; float in float register
call c_ftoi

; result in register x
© 2008 COSMIC Software STM8 Machine Library 359

Machine Library - c_ftol

c_ftol

C

360
Description
Convert float into long integer

Syntax

Function
c_ftol converts the float in float register to a four byte integer in long
register. No check is made for overflow.

Return Value
The resulting value is in long register. Flags have no meaningful value
upon return.

See Also
c_ftoi, c_itof, c_itol, c_ltof

; float in float register
call c_ftol

;result in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_fzmp

c_fzmp

Description

Compare a float in memory to zero

Syntax

Function
c_fzmp compares the float pointered by the x register against zero.

Return Value
The N and Z flags are set to reflect the operand value.

; pointer to operand in x register
call c_fzmp

; result in flags
© 2008 COSMIC Software STM8 Machine Library 361

Machine Library - c_getlx

c_getlx

C

362
Description
Get a long word from memory

Syntax

Function
c_getlx gets a long integer from memory using a pointer loaded in x.
The result is left in the long register.

Return Value
The byte is loaded in the long register. Flags have no meaningful value
upon return.

See Also
c_getly, c_getwfx, c_getwfy

; long address in x
call c_getlx

; result in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_getly

c_getly

Description

Get a long word from memory

Syntax

Function
c_getly gets a long integer from memory using a pointer loaded in y.
The result is left in the long register.

Return Value
The byte is loaded in the long register. Flags have no meaningful value
upon return.

See Also
c_getlx, c_getwfx, c_getwfy

; long address in y
call c_gety

; result in long register
© 2008 COSMIC Software STM8 Machine Library 363

Machine Library - c_getwfx

c_getwfx

C

364
Description
Get a word from far memory

Syntax

Function
c_getwfx gets a word from far memory using a pointer loaded in x and
c_x. The result is left in the a and xl registers.

Return Value
The word is loaded in the a and xl registers. Flags have no meaningful
value upon return.

See Also
c_getlx, c_getly, c_getwfy

; word address in x and c_x
call c_getwfx

; result in a and xl
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_getwfy

c_getwfy

Description

Get a word from far memory

Syntax

Function
c_getwfy gets a word from far memory using a pointer loaded in y and
c_y. The result is left in the a and xl registers.

Return Value
The word is loaded in the a and xl registers. Flags have no meaningful
value upon return.

See Also
c_getlx, c_getly, c_getwfx

; word address in y and c_y
call c_getwfy

; result in a and xl
© 2008 COSMIC Software STM8 Machine Library 365

Machine Library - c_getxfx

c_getxfx

C

366
Description
Get a word from far memory

Syntax

Function
c_getxfx gets a word from far memory using a pointer loaded in x and
c_x. The result is left in the x register.

Return Value
The word is loaded in the x register. Flags have no meaningful value
upon return.

See Also
c_getlx, c_getly, c_getwfy

; word address in x and c_x
call c_getxfx

; result in x
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_getxfy

c_getxfy

Description

Get a word from far memory

Syntax

Function
c_getxfy gets a word from far memory using a pointer loaded in y and
c_y. The result is left in the x register.

Return Value
The word is loaded in the x register. Flags have no meaningful value
upon return.

See Also
c_getlx, c_getly, c_getwfy

; word address in y and c_y
call c_getxfy

; result in x
© 2008 COSMIC Software STM8 Machine Library 367

Machine Library - c_getyfx

c_getyfx

C

368
Description
Get a word from far memory

Syntax

Function
c_getyfx gets a word from far memory using a pointer loaded in x and
c_x. The result is left in the y register.

Return Value
The word is loaded in the y register. Flags have no meaningful value
upon return.

See Also
c_getlx, c_getly, c_getwfy

; word address in x and c_x
call c_getyfx

; result in y
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_getyfy

c_getyfy

Description

Get a word from far memory

Syntax

Function
c_getyfy gets a word from far memory using a pointer loaded in y and
c_y. The result is left in the y register.

Return Value
The word is loaded in the y register. Flags have no meaningful value
upon return.

See Also
c_getlx, c_getly, c_getwfy

; word address in y and c_y
call c_getyfy

; result in y
© 2008 COSMIC Software STM8 Machine Library 369

Machine Library - c_idiv

c_idiv

C

370
Description
Quotient of integer division

Syntax

Function
c_idiv divides the two byte integer in the x register, by the two byte
integer in the y register. Values are assumed to be signed. If division by
zero is attempted, the result is the unchanged dividend.

Return Value
The quotient is placed in x. Flags have no meaningful value upon
return.

See Also
c_udiv

; dividend in x
; divisor in y

call c_idiv
; quotient in x
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_imul

c_imul

Description

Integer multiplication

Syntax

Function
c_imul multiplies the two byte integer in the x register, by the two byte
integer in the y register. No check is made for overflow.

Return Value
The resulting value is in x. Flags have no meaningful value upon return

; left in x
; right in y

call c_imul
; result in x
© 2008 COSMIC Software STM8 Machine Library 371

Machine Library - c_itof

c_itof

C

372
Description
Convert integer into float

Syntax

Function
c_itof converts the two byte integer in the x register, to a float stored in
float register.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
 c_ltof, c_ultof, c_xtof, c_uitof, c_uxtof

; operand in x
call c_itof

; result in float register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_itol

c_itol

Description

Convert integer into long

Syntax

Function
c_itol converts the two byte integer in the a and xl register pair, to a
long integer stored in long register.

Return Value
The resulting value is in long register. Flags have no meaningful value
upon return.

See Also
c_xtol, c_uitol, c_uxtol

; operand in a and xl
call c_itol

; result in long register
© 2008 COSMIC Software STM8 Machine Library 373

Machine Library - c_itolx

c_itolx

C

374
Description
Convert integer into long

Syntax

Function
c_itolx converts the two byte integer in the x register, to a long integer
stored in long register.

Return Value
The resulting value is in long register. Flags have no meaningful value
upon return.

See Also
c_xtol, c_uitol, c_uxtol

; operand in x
call c_itolx

; result in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_itoly

c_itoly

Description

Convert integer into long

Syntax

Function
c_itoly converts the two byte integer in the y register, to a long integer
stored in long register.

Return Value
The resulting value is in long register. Flags have no meaningful value
upon return.

See Also
c_xtol, c_uitol, c_uxtol

; operand in y
call c_itoly

; result in long register
© 2008 COSMIC Software STM8 Machine Library 375

Machine Library - c_jctab

c_jctab

C

376
Description
Perform C switch statement on char

Syntax

Function
c_jctab is called to switch to the proper code segment, depending on a
value in the a register and an address table found just after the call
instruction, and consisting in a list of two bytes signed offsets.

Return Value
c_jctab jumps to the proper code. It never returns.

See Also
c_jstab, c_jltab

; value in a
; table address after the call

call c_jctab
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_jltab

c_jltab

Description

Perform C switch statement on long

Syntax

Function
c_jltab is called to switch to the proper code segment, depending on a
value and an address table. The top of the table is found in the x regis-
ter, and consists of a count followed by a list of pairs. A pair consists of
a value followed by an address. The pair list is ended by the default
address. All values are four byte integers. All addresses and the count
are two byte integers.

Return Value
c_jltab jumps to the proper code. It never returns.

See Also
c_jctab, c_jstab

; value in long register
; table address in x

jp c_jltab
© 2008 COSMIC Software STM8 Machine Library 377

Machine Library - c_jstab

c_jstab

C

378
Description
Perform C switch statement on integer

Syntax

Function
c_jstab is called to switch to the proper code segment, depending on a
value in the x register and an address table found just after the call
instruction, and consisting in a list of two bytes signed offsets.

Return Value
c_jstab jumps to the proper code. It never returns.

See Also
c_jctab, c_jltab

; value in x
; table address after the call

call c_jstab
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_ladc

c_ladc

Description

Long integer addition

Syntax

Function
c_ladc adds the four byte integer in long register and the unsigned char
in the a register.

Return Value
The result is in long register. Flags are not meaningful upon return.

See Also
c_ladd

; left in long register
; right in a register

call c_ladc
; result in long register
© 2008 COSMIC Software STM8 Machine Library 379

Machine Library - c_ladd

c_ladd

C

380
Description
Long integer addition

Syntax

Function
c_ladd adds the four byte integer in long register and the four byte inte-
ger pointered at by the x register.

Return Value
The result is in long register. Flags are not meaningful upon return.

See Also
c_lcmp, c_lsub

; left in long register
; pointer to right in x register

call c_ladd
; result in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_land

c_land

Description

Bitwise AND for long integers

Syntax

Function
c_land operates a bitwise AND between the operands. Each operand is
taken to be a four byte integer.

Return Value
The result is in long register. Flags are not meaningful upon return.

See Also
c_lor, c_lxor

; left in long register
; pointer to right in x register

call c_land
; result in long register
© 2008 COSMIC Software STM8 Machine Library 381

Machine Library - c_lcmp

c_lcmp

C

382
Description
Long integer compare

Syntax

Function
c_lcmp compares the four byte integer in long register to the four byte
integer pointered by the x register.

Return Value
Flags are set accordingly.

See Also
c_ladd, c_lsub, c_lsmp

; left in long register
; pointer to right in x register

call c_lcmp
; result in long flags
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_ldiv

c_ldiv

Description

Quotient of long integer division

Syntax

Function
c_ldiv divides the four byte integer in long register by the four byte
integer pointered by the x register. Values are assumed to be signed. If
division by zero is attempted, the result is the unchanged dividend.

Return Value
 The quotient is in long register and the flags are not meaningful upon
return.

See Also
c_ludv, c_lmod, c_lumd

; dividend in long register
; pointer to divisor in x register

call c_ldiv
;quotient in long register
© 2008 COSMIC Software STM8 Machine Library 383

Machine Library - c_lgadc

c_lgadc

C

384
Description
Long addition

Syntax

Function
c_lgadc performs the long addition of the unsigned char value in the a
register and the long value pointed at by the x register.

Return Value
The result is stored at the location in the x register. Flags are not mean-
ingful upon return.

See Also
c_lgadd, c_pgadc

; pointer to left in x register
; right in a register

call c_lgadc
; result in left
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_lgadd

c_lgadd

Description

Long addition

Syntax

Function
c_lgadd performs the long addition of the value pointered by the x reg-
ister and the value in long register.

Return Value
The result is stored at the location pointered by the x register. Flags are
not meaningful upon return.

See Also
c_lgadc

; pointer to left in x register
; right in long register

call c_lgadd
; result in left
© 2008 COSMIC Software STM8 Machine Library 385

Machine Library - c_lgand

c_lgand

C

386
Description
Long bitwise AND

Syntax

Function
c_lgand performs the long bitwise AND of the value in long register
and the value pointered by the x register.

Return Value
The result is stored in long register. Flags are not meaningful upon
return.

; left in long register
; pointer to right in x register

call c_lgand
; result in left
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_lglsh

c_lglsh

Description

Long shift left

Syntax

Function
c_lglsh performs the long left shift of the value pointered by the x regis-
ter by the bit count in the a register. No check is done against silly
counts.

Return Value
The result is stored in the location pointered by x. Flags are not mean-
ingful upon return.

; pointer to long in x register
; shift count in a register

call c_lglsh
; result in memory
© 2008 COSMIC Software STM8 Machine Library 387

Machine Library - c_lgmul

c_lgmul

C

388
Description
Long multiplication in memory

Syntax

Function
c_lgmul performs the long multiplication of the value pointered by the x
register, by the value in long register.

Return Value
The result is stored in the location pointered by x. Flags are not mean-
ingful upon return.

See Also
c_lmul

; pointer to left in x register
; right in long register

call c_lgmul
; result in left
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_lgneg

c_lgneg

Description

Negate a long integer in memory

Syntax

Function
c_lgneg negates the four byte integer pointered by the x register.

Return Value
The result is in the location pointered by x. The flags are not meaning-
ful upon return.

See Also
c_lneg

; pointer to operand in x register
call c_lneg

; result in memory
© 2008 COSMIC Software STM8 Machine Library 389

Machine Library - c_lgor

c_lgor

C

390
Description
Long bitwise OR

Syntax

Function
c_lgor performs the long bitwise OR of the value in long register and
the value pointered by the x register.

Return Value
The result is stored in long register. Flags are not meaningful upon
return.

; pointer to left in x register
; right in long register

call c_lgor
; result in left
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_lgrsh

c_lgrsh

Description

Signed long shift right

Syntax

Function
c_lgrsh performs the signed long right shift of the value pointered by
the x register and the value in long register. No check is done against
silly counts. Because the value is signed, arithmetic shift instructions
are used.

Return Value
The result is stored in the location pointered by x. Flags are not mean-
ingful upon return.

; pointer to long in x register
; shift count in a register

call c_lgrsh
; result in memory
© 2008 COSMIC Software STM8 Machine Library 391

Machine Library - c_lgsbc

c_lgsbc

C

392
Description
Long subtraction

Syntax

Function
c_lgsbc evaluates the (long) difference between the value pointered by
the x register and the unsigned char value in the a register.

Return Value
The result is stored in the location pointered by x. Flags are not mean-
ingful upon return.

See Also
c_lgsub

; pointer to left in x register
; right in a register

call c_lgsbc
; result in left
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_lgsub

c_lgsub

Description

Long subtraction

Syntax

Function
c_lgsub evaluates the (long) difference between the value pointered by
the x register and the value in long register.

Return Value
The result is stored in the location pointered by x. Flags are not mean-
ingful upon return.

See Also
c_lgsbc

; pointer to left in x register
; right in long register

call c_lgsub
; result in left
© 2008 COSMIC Software STM8 Machine Library 393

Machine Library - c_lgursh

c_lgursh

C

394
Description
Unsigned long shift right

Syntax

Function
c_lgursh performs the unsigned long right shift of the value pointered
by the x register and the value in long register. No check is done against
silly counts. Because the value is unsigned, logical shift instructions are
used.

Return Value
The result is stored in the location pointered by x. Flags are not mean-
ingful upon return.

; pointer to long in x register
; shift count in a register

call c_lgursh
; result in memory
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_lgxor

c_lgxor

Description

Long bitwise exclusive OR

Syntax

Function
c_lgxor performs the long bitwise Exclusive OR of the value in long
register and the value pointered by the x register.

Return Value
The result is stored in long register. Flags are not meaningful upon
return.

; pointer to right in x register
; left in long register

call c_lgxor
; result in left
© 2008 COSMIC Software STM8 Machine Library 395

Machine Library - c_llsh

c_llsh

C

396
Description
Long integer shift left

Syntax

Function
c_llsh shifts left four byte integer in long register by the number of
places specified by the a register. A zero count leaves the long register
unchanged. No check is made for invalid counts.

Return Value
The resulting value is in long register. Flags are not meaningful upon
return.

See Also
c_lrsh, c_lursh

; operand in long register
; shift count in a register

call c_llsh
; result in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_lmod

c_lmod

Description

Remainder of long integer division

Syntax

Function
c_lmod divides the four byte integer in long register by the four byte
integer pointered by the x register. Values are assumed to be signed.
The dividend is returned if a division by zero is attempted.

Return Value
The remainder is stored in long register. Flags are not meaningful upon
return.

See Also
c_lumd, c_ldiv, c_udiv

; left in long register
; pointer to right in x register

call c_lmod
; remainder in long register
© 2008 COSMIC Software STM8 Machine Library 397

Machine Library - c_lmul

c_lmul

C

398
Description
Multiply long integer by long integer

Syntax

Function
c_lmul multiplies the four byte integer in long register by the four byte
integer pointered by the x register. No check is made for overflow.

Return Value
The resulting value is in long register. Flags are not meaningful upon
return.

See Also
c_lgmul

; left in long register
; pointer to right in x register

call c_lmul
; result in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_lneg

c_lneg

Description

Negate a long integer

Syntax

Function
c_lneg negates the four byte integer in long register.

Return Value
The result is in long register. The flags are not meaningful upon return.

See Also
c_lgneg

; operand in long register
call c_lneg

; result in long register
© 2008 COSMIC Software STM8 Machine Library 399

Machine Library - c_lor

c_lor

C

400
Description
Bitwise OR with long integers

Syntax

Function
c_lor operates a bitwise OR between the contents of long register and
the long pointered by the x register. Each operand is taken to be a four
byte integer.

Return Value
The result is in long register. The flags are not meaningful upon return.

See Also
c_land, c_lxor

; left in long register
; pointer to right in x register

call c_lor
; result in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_lrsh

c_lrsh

Description

Long integer right shift

Syntax

Function
c_lrsh right shifts the four byte integer in long register by the number of
bits specified by the a register. A zero count leaves the long register
unchanged. No check is made for invalid counts. The value is assumed
to be signed, so a negative value will stay negative as by an arithmetic
shift.

Return Value
The resulting value stays in long register. Flags are not meaningful
upon return.

See Also
c_llsh, c_lursh

; operand in long register
; shift count in a register

call c_lrsh
; result in long register
© 2008 COSMIC Software STM8 Machine Library 401

Machine Library - c_lrzmp

c_lrzmp

C

402
Description
Long test against zero

Syntax

Function
c_lrzmp tests the value in the long register and updates the sign and
zero flags.

Return Value
Nothing, but the flags.

See Also
c_lzmp

; operand in long register
call c_lrzmp

; result in the flags
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_lsbc

c_lsbc

Description

Long integer subtraction

Syntax

Function
c_lsbc subtracts the unsigned char in the a register from the four byte
integer in long register.

Return Value
The result is in long register. Flags are not meaningful upon return.

See Also
c_lsub

; left in long register
; right in a register

call c_lsbc
; result in long register
© 2008 COSMIC Software STM8 Machine Library 403

Machine Library - c_lsub

c_lsub

C

404
Description
Long integer subtraction

Syntax

Function
c_lsub subtracts the four byte integer pointered by the x register from
the four byte integer in long register.

Return Value
The result is in long register. Flags are not meaningful upon return.

See Also
c_ladd, c_lcmp

; left in long register
; pointer to right in x register

call c_lsub
; result in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_lsmp

c_lsmp

Description

Long integer compare with overflow

Syntax

Function
c_lsmp compares the four byte integer in long register to the four byte
integer pointered by the x register and updates the resulting flags in case
of overflow.

Return Value
Flags are set accordingly.

See Also
c_ladd, c_lsub, c_lcmp

; left in long register
; pointer to right in x register

call c_lsmp
; result in long flags
© 2008 COSMIC Software STM8 Machine Library 405

Machine Library - c_ltof

c_ltof

C

406
Description
Convert long integer into float

Syntax

Function
c_ltof converts the four byte integer in float register to a float.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
c_ftoi, c_ftol, c_itof, c_itol

; operand in float integer
call c_ltof

; result in float register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_ltor

c_ltor

Description

Load memory into long register

Syntax

Function
c_ltor loads the four byte integer pointered by the x register into the
long register.

Return Value
The resulting value is in long register. Flags have no meaningful value
upon return.

See Also
c_rtol

; pointer to operand in x register
call c_ltor

; result in float register
© 2008 COSMIC Software STM8 Machine Library 407

Machine Library - c_ludv

c_ludv

C

408
Description
Quotient of unsigned long integer division

Syntax

Function
c_ludv divides the four byte integer in long register by the four byte
integer pointered by the x register. Values are assumed to be unsigned.
The dividend is returned if a division by zero is attempted.

Return Value
The quotient is in long register. Flags are not meaningful upon return.

See Also
c_ldiv, c_lmod, c_lumd

; left in long register
; pointer to right in x register

call c_ludv
; quotient in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_lumd

c_lumd

Description

Remainder of unsigned long integer division

Syntax

Function
c_lumd divides the four byte integer in long register by the four byte
integer pointered by the x register. Values are assumed to be unsigned.
The dividend is returned if a division by zero is attempted.

Return Value
The remainder is in long register. Flags are not meaningful upon return.

See Also
c_lmod, c_ldiv, c_ludv

; left in long register
; pointer to right in x register

call c_lumd
; remainder in long register
© 2008 COSMIC Software STM8 Machine Library 409

Machine Library - c_lursh

c_lursh

C

410
Description
Unsigned long integer shift right

Syntax

Function
c_lursh right shifts the four byte integer in long register by the number
of bits specified by the a register. A zero count leaves the long register
unchanged. No check is made for invalid counts. The value is assumed
to be unsigned. The shift instruction used is therefore a logical shift.

Return Value
The resulting value is in long register. Flags are not meaningful upon
return.

See Also
c_llsh, c_lrsh

; operand in long register
; shift count in a register

call c_lursh
; result in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_lxor

c_lxor

Description

Bitwise exclusive OR with long integers

Syntax

Function
c_lxor operates a bitwise Exclusive OR between the contents of long
register and the long pointered by the x register. Each operand is taken
to be a four byte integer.

Return Value
The result is in long register. The flags are not meaningful upon return.

See Also
c_land, c_lor

; left in long integer
; pointer to right in x register

call c_lxor
; result in long register
© 2008 COSMIC Software STM8 Machine Library 411

Machine Library - c_lzmp

c_lzmp

C

412
Description
Compare a long integer to zero

Syntax

Function
c_lzmp compares the four byte integer pointered by the x register to
zero.

Return Value
Nothing, but the flags.

See Also
c_lrzmp

; pointer to operand in x register
call c_lzmp

; result in the flags
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_pgadc

c_pgadc

Description

Far pointer addition

Syntax

Function
c_pgadc performs the long addition of the unsigned char value in the a
register and the far pointer pointed at by the x register.

Return Value
The result is stored at the location in the x register. Flags are not mean-
ingful upon return.

See Also
c_lgadd, c_lgadc

; pointer to left in x register
; right in a register

call c_pgadc
; result in left
© 2008 COSMIC Software STM8 Machine Library 413

Machine Library - c_pgadd

c_pgadd

C

414
Description
Far pointer addition

Syntax

Function
c_pgadd performs the long addition of the value in long register and the
far pointer pointed at by the x register.

Return Value
The result is stored at the location in the x register. Flags are not mean-
ingful upon return.

See Also
c_lgadd, c_lgadc

; pointer to left in x register
; right in long register

call c_pgadd
; result in left
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_putlx

c_putlx

Description

Put a long integer in memory

Syntax

Function
c_putlx puts the value in long register into memory using a pointer
loaded in x.

Return Value
None.

See Also
c_getlx, c_getwx, c_putly, c_putw

; long address in x
; value in long register

call c_putlx
© 2008 COSMIC Software STM8 Machine Library 415

Machine Library - c_putly

c_putly

C

416
Description
Put a long integer in memory

Syntax

Function
c_putly puts the value in long register into memory using a pointer
loaded in y.

Return Value
None.

See Also
c_getly, c_getwy, c_putlx, c_putw

; long address in y
; value in long register

call c_putly
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_putwf

c_putwf

Description

Put a word in far memory

Syntax

Function
c_putwf puts the value in a and xl registers into far memory using a
pointer loaded in y and c_y.

Return Value
None.

See Also
c_getlx, c_getly, c_getw, c_putlx, c_putly

; word address in y and c_y
; value in a and xl

call c_putwf
© 2008 COSMIC Software STM8 Machine Library 417

Machine Library - c_pxtox

c_pxtox

C

418
Description
Get a far pointer from far memory

Syntax

Function
c_pxtox gets a far pointer from far memory using a pointer loaded in x
and c_x. The result is left in the x and c_x.

Return Value
The far pointer is loaded in the x register and the c_x memory location.
Flags have no meaningful value upon return.

See Also
c_pxtoy, c_pytox, c_pytoy

; far pointer address in x and c_x
call c_pxtox

; result in x and c_x
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_pxtoy

c_pxtoy

Description

Get a far pointer from far memory

Syntax

Function
c_pxtoy gets a far pointer from far memory using a pointer loaded in x
and c_x. The result is left in the y and c_y.

Return Value
The far pointer is loaded in the y register and the c_y memory location.
Flags have no meaningful value upon return.

See Also
c_pxtox, c_pytox, c_pytoy

; far pointer address in x and c_x
call c_pxtoy

; result in y and c_y
© 2008 COSMIC Software STM8 Machine Library 419

Machine Library - c_pytox

c_pytox

C

420
Description
Get a far pointer from far memory

Syntax

Function
c_pytox gets a far pointer from far memory using a pointer loaded in y
and c_y. The result is left in the x and c_x.

Return Value
The far pointer is loaded in the x register and the c_x memory location.
Flags have no meaningful value upon return.

See Also
c_pxtox, c_pxtoy, c_pytoy

; far pointer address in y and c_y
call c_pytox

; result in x and c_x
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_pytoy

c_pytoy

Description

Get a far pointer from far memory

Syntax

Function
c_pytoy gets a far pointer from far memory using a pointer loaded in y
and c_y. The result is left in the y and c_y.

Return Value
The far pointer is loaded in the y register and the c_y memory location.
Flags have no meaningful value upon return.

See Also
c_pxtox, c_pxtoy, c_pytox

; far pointer address in y and c_y
call c_pytoy

; result in y and c_y
© 2008 COSMIC Software STM8 Machine Library 421

Machine Library - c_rtofl

c_rtofl

C

422
Description
Store long register in far memory

Syntax

Function
c_rtofl store the four byte integer in long register into the memory loca-
tion pointered by the x register and c_x.

Return Value
The resulting value is in the memory location pointered by x and c_x.
Flags have no meaningful value upon return.

See Also
c_fltor

; pointer to destination in x register and c_x
; operand in long integer

call c_rtofl
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_rtol

c_rtol

Description

Store long register in memory

Syntax

Function
c_rtol store the four byte integer in long register into the memory loca-
tion pointered by the x register.

Return Value
The resulting value is in the memory location pointered by x. Flags
have no meaningful value upon return.

See Also
c_ltor

; pointer to destination in x register
; operand in long integer

call c_rtol
© 2008 COSMIC Software STM8 Machine Library 423

Machine Library - c_sdivx

c_sdivx

C

424
Description
Quotient of signed char division

Syntax

Function
c_sdivx divides the signed integer in x by the signed byte in the a regis-
ter. Values are assumed to be signed. If division by zero is attempted,
the result is the unchanged dividend.

Return Value
The quotient is in x. Flags are not meaningful upon return.

See Also
c_cdivx, c_cdivy, c_sdivy

; dividend in x register
; divisor in a register

call c_sdivx
; quotient in x
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_sdivy

c_sdivy

Description

Quotient of signed char division

Syntax

Function
c_sdivy divides the signed integer in y by the signed byte in the a regis-
ter. Values are assumed to be signed. If division by zero is attempted,
the result is the unchanged dividend.

Return Value
The quotient is in y. Flags are not meaningful upon return.

See Also
c_cdivx, c_cdivy, c_sdivy

; dividend in y register
; divisor in a register

call c_sdivy
; quotient in y
© 2008 COSMIC Software STM8 Machine Library 425

Machine Library - c_smodx

c_smodx

C

426
Description
Remainder of signed char division

Syntax

Function
c_smodx divides the signed integer in x by the signed byte in the a reg-
ister. Values are assumed to be signed. If division by zero is attempted,
the result is the unchanged dividend.

Return Value
The remainder is in x. Flags are not meaningful upon return.

See Also
c_smody

; dividend in x register
; divisor in a register

call c_smodx
; remainder in x
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_smody

c_smody

Description

Remainder of signed char division

Syntax

Function
c_smody divides the signed integer in y by the signed byte in the a reg-
ister. Values are assumed to be signed. If division by zero is attempted,
the result is the unchanged dividend.

Return Value
The remainder is in y. Flags are not meaningful upon return.

See Also
c_smodx

; dividend in y register
; divisor in a register

call c_smody
; remainder in y
© 2008 COSMIC Software STM8 Machine Library 427

Machine Library - c_smul

c_smul

C

428
Description
Multiply long integer by unsigned byte

Syntax

Function
c_smul multiplies the four byte integer in long register by the unsigned
byte in the a register. No check is made for overflow.

Return Value
The resulting value is in long register. Flags are not meaningful upon
return.

See Also
c_lgmul

; left in long register
; right byte in a register

call c_smul
; result in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_uitof

c_uitof

Description

Convert unsigned integer into float

Syntax

Function
c_uitof converts the two byte unsigned integer in the x register to a float
stored in float register.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
c_itof, c_ltof, c_ultof, c_xtof, c_uxtof

; operand in x
call c_uitof

; result in float register
© 2008 COSMIC Software STM8 Machine Library 429

Machine Library - c_uitol

c_uitol

C

430
Description
Convert unsigned integer into long

Syntax

Function
c_uitol converts the two byte unsigned integer in the a and xl register
pair, to a long integer stored in long register.

Return Value
The resulting value is in long register. Flags have no meaningful value
upon return.

See Also
c_itol, c_xtol, c_uxtol

; operand in a and xl
call c_uitol

; result in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_uitolx

c_uitolx

Description

Convert unsigned integer into long

Syntax

Function
c_uitolx converts the two byte unsigned integer in the x register, to a
long integer stored in long register.

Return Value
The resulting value is in long register. Flags have no meaningful value
upon return.

See Also
c_itol, c_xtol, c_uxtol

; operand in x
call c_uitolx

; result in long register
© 2008 COSMIC Software STM8 Machine Library 431

Machine Library - c_uitoly

c_uitoly

C

432
Description
Convert unsigned integer into long

Syntax

Function
c_uitoly converts the two byte unsigned integer in the y register, to a
long integer stored in long register.

Return Value
The resulting value is in long register. Flags have no meaningful value
upon return.

See Also
c_itol, c_xtol, c_uxtol

; operand in y
call c_uitoly

; result in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_ultof

c_ultof

Description

Convert unsigned long integer into float

Syntax

Function
c_ultof converts the four unsigned byte integer in long register to a
float.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
c_itof, c_ltof, c_xtof, c_uitof, c_uxtof

; long in long register
call c_ultof

; result in float register
© 2008 COSMIC Software STM8 Machine Library 433

Machine Library - c_umul

c_umul

C

434
Description
Multiply unsigned integers with long result

Syntax

Function
c_umul multiplies the two byte unsigned integer in the x register by the
two byte unsigned integer in the y register.

Return Value
The resulting value is in long register. Flags are not meaningful upon
return.

; left in x register
; right in y register

call c_umul
; result in long register
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_xtopy

c_xtopy

Description

Store a far pointer into far memory

Syntax

Function
c_xtopy stores the far pointer in x and c_x into far memory using a
pointer loaded in y and c_y.

Return Value
Flags have no meaningful value upon return.

See Also
c_ytopx

; value in x and c_x
; far pointer address in y and c_y

call c_xtopy
© 2008 COSMIC Software STM8 Machine Library 435

Machine Library - c_xymov

c_xymov

C

436
Description
Copy a structure into another

Syntax

Function
c_xymov copy the source structure pointed by the memory location y
into the structure pointed by the x register. The structure size is located
in the a register.

Return Value
None.

See Also
c_xymov, c_yxmov, c_xymvx, c_yxmvx

; pointer to source in y
; pointer to destination in x
; size in a register

call c_xymov
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_xymvf

c_xymvf

Description

Copy a structure in far memory

Syntax

Function
c_xymvf copy the source structure pointed by the y register and the
memory location pointed by c_y into the structure pointed by the x reg-
ister and the memory location pointed by c_x. The structure size is in
the a register.

Return Value
None.

See Also
 c_xymov, c_yxmov, c_xymvy

; pointer to source in y and c_y
; pointer to destination in x and c_x
; size in a

call c_xymvf
© 2008 COSMIC Software STM8 Machine Library 437

Machine Library - c_xymvfl

c_xymvfl

C

438
Description
Copy a large structure in far memory

Syntax

Function
c_xymvfl copy the source structure pointed by the y register and the
memory location pointed by c_y into the structure pointed by the mem-
ory location pointed by c_x. The structure size is in the x register.

Return Value
None.

See Also
 c_xymov, c_yxmov, c_xymvy

; pointer to source in y and c_y
; pointer to destination in c_x
; size in x

call c_xymvfl
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_xymvx

c_xymvx

Description

Copy a structure into another

Syntax

Function
c_xymvx copy the source structure pointed by the memory location y
into the structure pointed by the x register. The structure size is located
in the a register.

Return Value
None.

See Also
c_xymov, c_yxmov, c_xymvx, c_yxmvx

; pointer to source in y
; pointer to destination in x
; size in a register

call c_xymvx
© 2008 COSMIC Software STM8 Machine Library 439

Machine Library - c_xymvxl

c_xymvxl

C

440
Description
Copy a large structure into another

Syntax

Function
c_xymvxl copy the source structure pointed by the memory location y
into the structure pointed by the c_x memory location. The structure
size is located in the x register.

Return Value
None.

See Also
c_xymov, c_yxmov, c_xymvx, c_yxmvx

; pointer to source in y
; pointer to destination in c_x
; size in x register

call c_xymvxl
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_ytopx

c_ytopx

Description

Store a far pointer into far memory

Syntax

Function
c_ytopx stores the far pointer in y and c_y into far memory using a
pointer loaded in x and c_x.

Return Value
Flags have no meaningful value upon return.

See Also
c_xtopy

; value in y and c_y
; far pointer address in x and c_x

call c_ytopx
© 2008 COSMIC Software STM8 Machine Library 441

Machine Library - c_yxmov

c_yxmov

C

442
Description
Copy a structure into another

Syntax

Function
c_yxmov copy the source structure pointed by the x register into the
structure pointed by the y register. The structure size is in the a register.

Return Value
None.

See Also
c_xymov, c_xymvx, c_yxmvx

; pointer to source in x
; pointer to destination in y
; size in a

call c_yxmov
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_yxmvf

c_yxmvf

Description

Copy a structure in far memory

Syntax

Function
c_yxmvf copy the source structure pointed by the x register and the
memory location pointed by c_x into the structure pointed by the y reg-
ister and the memory location pointed by c_y. The structure size is in
the a register.

Return Value
None.

See Also
 c_xymov, c_yxmov, c_xymvy

; pointer to source in x and c_x
; pointer to destination in y and c_y
; size in a

call c_yxmvf
© 2008 COSMIC Software STM8 Machine Library 443

Machine Library - c_yxmvfl

c_yxmvfl

C

444
Description
Copy a large structure in far memory

Syntax

Function
c_yxmvfl copy the source structure pointed by the memory location
pointed by c_x into the structure pointed by the y register and the mem-
ory location pointed by c_y. The structure size is in the x register.

Return Value
None.

See Also
 c_xymov, c_yxmov, c_xymvy

; pointer to source c_x
; pointer to destination in y and c_y
; size in x

call c_yxmvfl
© 2008 COSMIC SoftwareSTM8 Machine Library

Machine Library - c_yxmvx

c_yxmvx

Description

Copy a structure into another

Syntax

Function
c_yxmvx copy the source structure pointed by the x register into the
structure pointed by the y register. The structure size is in the a register.

Return Value
None.

See Also
c_xymov, c_xymvx, c_yxmvx

; pointer to source in x
; pointer to destination in y
; size in a

call c_yxmvx
© 2008 COSMIC Software STM8 Machine Library 445

Machine Library - c_yxmvxl

c_yxmvxl

C

446
Description
Copy a large structure into another

Syntax

Function
c_yxmvxl copy the source structure pointed by the c_x memory location
into the structure pointed by the y register. The structure size is in the x
register.

Return Value
None.

See Also
c_xymov, c_xymvx, c_yxmvx

; pointer to source in c_x
; pointer to destination in y
; size in x

call c_yxmvxl
© 2008 COSMIC SoftwareSTM8 Machine Library

APPENDIX

D

Compiler Passes
The information contained in this appendix is of interest to those users
who want to modify the default operation of the cross compiler by
changing the configuration file that the cxstm8 compiler uses to control
the compilation process.

This appendix describes each of the passes of the compiler:

cpstm8 the parser

cgstm8 the code generator

costm8 the assembly language optimizer
© 2008 COSMIC Software Compiler Passes 447

The cpstm8 ParserD

448
The cpstm8 Parser
cpstm8 is the parser used by the C compiler to expand #defines,
#includes, and other directives signalled by a #, parse the resulting text,
and outputs a sequential file of flow graphs and parse trees suitable for
input to the code generator cgstm8.

Command Line Options
cpstm8 accepts the following options, each of which is described in
detail below:
© 2008 COSMIC SoftwareCompiler Passes

The cpstm8 Parser
Parser Option Usage

Option Description

-ad enable #define expansion inside inline assembly code
between #asm and #endasm directives. By default, #define
symbols are expanded only in the C code.

cpstm8 [options] file
-ad expand defines in assembly
-c99 c99 type behaviour
-cc do not cast const expressions
-ck extra type checkings
-cp no constant propagation
-csb check signed bitfields
-d*> define symbol=value
-e run preprocessor only
+e* error file name
-h*> include header
-i*> include path
-l output line information
-md make dependencies
-m# model configuration
-nb no bitfield packing
-nc no const replacement
-ne no enum optimization
-np allow pointer narrowing
-ns do not share locals
-o* output file name
-p need prototypes
-pb pack bit variables
-rb reverse bitfield order
-s do not reorder locals
-sa strict ANSI conformance
-u plain char is unsigned
-w# enable warnings
-xd debug info for data
-xp no path in debug info
-xu no debug info if unused
-xx extended debug info
-x output debug info
© 2008 COSMIC Software Compiler Passes 449

The cpstm8 ParserD

450
-c99 authorize the repetition of the const and volatile modifiers in
the declaration either directly or indirectly in the typedef.

-cc do not apply standard type casting to the result of a con-
stant expression. This option allows compatibility with pars-
ers previous to version V4.5p. These previous parsers were
behaving as if all constants were considered of type long
instead of the default type int. Such expressions were allow-
ing intermediate results to become larger that an int without
any truncation.

-ck enable extra type checking. For more information, see
”Extra verifications” below.

-cp disable the constant propagation optimization. By default,
when a variable is assigned with a constant, any subse-
quent access to that variable is replaced by the constant
itself until the variable is modified or a flow break is encoun-
tered (function call, loop, label ...).

-csb produce an error message if a bitfield is declared explicitly
with the signed keyword. By default, the compiler silently
ignores the signed feature and handles all bitfields as
unsigned values.

-d*^ specify * as the name of a user-defined preprocessor sym-
bol (#define). The form of the definition is
-dsymbol[=value]; the symbol is set to 1 if value is omitted.
You can specify up to 60 such definitions.

-e run preprocessor only. cpstm8 only outputs lines of text.

+e* log errors in the text file * instead of displaying the mes-
sages on the terminal screen.

-h*> include files before to start the compiler process. You can
specify up to 60 files.

-i*> specify include path. You can specify up to 128 different
paths. Each path is a directory name, not terminated by any
directory separator character, or a file containing a list of
directory names.

-l output line number information for listing or debug.

Parser Option Usage (cont.)

Option Description
© 2008 COSMIC SoftwareCompiler Passes

The cpstm8 Parser
-md create only a list of ‘make’ compatible dependencies con-
sisting for each source file in the object name followed by a
list of header files needed to compile that file.

-m# the value # is used to configure the parser behaviour. It is a
two bytes value, the upper byte specifies the default space
for variables, and the lower byte specifies the default space
for functions. A space byte is the or’ed value between a size
specifier and several optional other specifiers. The allowed
size specifiers are:

Allowed optional specifiers are:

Note that all the combinations are not significant for all the
target processors.

-nb do not pack bitfields. By default, trailing unused bits in the
last bitfield of a structure are removed if this saves at least
one byte.

-nc do not replace an access to an initialized const object by its
value. By default, the usage of a const object whose value
is known is replaced by its constant value.

Parser Option Usage (cont.)

Option Description

0x10 @tiny

0x20 @near

0x30 @far

0x02 @pack

0x04 @nostack
© 2008 COSMIC Software Compiler Passes 451

The cpstm8 ParserD

452
-ne do not optimize size of enum variables. By default, the com-
piler selects the smallest integer type by checking the range
of the declared enum members. This mechanism does not
allow incomplete enum declaration. When the -ne option is
selected, all enum variables are allocated as int variables,
thus allowing incomplete declarations, as the knowledge of
all the members is no more necessary to choose the proper
integer type.

-np allow pointer narrowing. By default, the compiler refuses to
cast the pointer into any smaller object. This option should
be used carefully as such conversions are truncating
addresses.

-ns do not share independent local variables. By default, the
compiler tries to overlay variables in the same memory
location or register if they are not used concurrently.

-o* write the output to the file *. Default is STDOUT for output if
-e is specified. Otherwise, an output file name is required.

-p enforce prototype declaration for functions. An error mes-
sage is issued if a function is used and no prototype decla-
ration is found for it. By default, the compiler accepts both
syntaxes without any error.

-pb pack _Bool local variables. By default, _Bool local varia-
bles are allocated on one byte each.

-rb reverse the bitfield fill order. By default, bitfields are filled
from less significant bit (LSB) to most significant bit (MSB).
If this option is specified, filling works from most significant
bit to less significant bit.

-s do not reorder local variables. By default, the compiler sorts
the local variables of a function in order to allocate the most
used variables as close as possible to the frame pointer.
This allows to use the shortest addressing modes for the
most used variables.

Parser Option Usage (cont.)

Option Description
© 2008 COSMIC SoftwareCompiler Passes

The cpstm8 Parser
Extra verifications
This paragrah describes the checkings done by the -ck parser option
(+strict compiler option) according to the error message produced.

implicit int type in struct/union declaration
implicit int type in global declaration
implicit int type in local declaration
implicit int type in argument declaration - an object is declared with-
out an explicit type and is defaulted to int according to the ANSI stand-
ard.

-sa enforce a strict ANSI checking by rejecting any syntax or
semantic extension. This option also disables the enum size
optimization (-ne).

-u take a plain char to be of type unsigned char, not signed
char. This also affects in the same way strings constants.

-w# enable warnings if # is greater or equal to 0. By default,
warnings are disabled.

-x generate debugging information for use by the cross debug-
ger or some other debugger or in-circuit emulator. The
default is to generate no debugging information.

-xd add debug information in the object file only for data
objects, hiding any function.

-xp do not prefix filenames in the debug information with any
absolute path name. Debuggers will have to be informed
about the actual files location.

-xu do not produce debug information for localized variables if
they are not used. By default, the compiler produces a com-
plete debug information regardless the variable is accessed
or not.

-xx add debug information in the object file for any label defin-
ing code or data.

Parser Option Usage (cont.)

Option Description
© 2008 COSMIC Software Compiler Passes 453

The cpstm8 ParserD

454
float value too large for integer cast - a float constant is cast to an
integer or a long but is larger than the maximum value of the cast type.

compare out of range - a comparison is made with a constant larger (or
smaller) than the possible values for the type of the compared expres-
sion.

shift count out of range - a shift count is larger than the bit size of the
shifted expression.

constant assignment in a test - a constant is assigned to a variable in a
test expression.

unreachable code - a code sequence cannot be reached due to previous
optimizations.

missing return expression - a return statement without expression is
specified in a function with a non void return type.

missing explicit return - a function is not ending with a return state-
ment.

value out of range - a constant is assigned to a variable and is larger (or
smaller) than the possible set of values for that type.

truncating assignment - an expression is assigned to a variable and has
a type larger than the variable one.

The -ck option also enables internally the prototype checking.

Return Status
cpstm8 returns success if it produces no error diagnostics.

Example
cpstm8 is usually invoked before cgstm8 the code generator, as in:

cpstm8 -o \2.cx1 -u -i \cosmic\hstm8 file.c
cgstm8 -o \2.cx2 \2.cx1
© 2008 COSMIC SoftwareCompiler Passes

The cgstm8 Code Generator
The cgstm8 Code Generator
cgstm8 is the code generating pass of the C compiler. It accepts a
sequential file of flow graphs and parse trees from cpstm8 and outputs a
sequential file of assembly language statements.

As much as possible, the compiler generates freestanding code, but, for
those operations which cannot be done compactly, it generates inline
calls to a set of machine-dependent runtime library routines.

Command Line Options
cgstm8 accepts the following options, each of which is described in
detail below:

Code generator Option Usage

Option Description

-a optimize _asm code. By default, the assembly code
inserted by a _asm call is left unchanged by the optimizer.

-bss inhibit generating code into the bss section.

-ck enable stack overflow checking.

 cgstm8 [options] file
-a optimize _asm code
-bss do not use bss
-ck check stack frame
-ct constants in code
-dl# output line information
+e* error file name
-f full source display
-fl far library calls
-l output listing
-na do not xdef alias name
-nc functions do not cross section
-no do not use optimizer
-o* output file name
-sf split function sections
-v verbose
© 2008 COSMIC Software Compiler Passes 455

The cgstm8 Code GeneratorD

456
-ct output constant in the .text section. By default, the compiler
outputs literals and constants in the .const section.

-dl# produce line number information. # must be either ‘1’ or ‘2’.
Line number information can be produced in two ways: 1)
function name and line number is obtained by specifying
-dl1; 2) file name and line number is obtained by specifying
-dl2. All information is coded in symbols that are in the
debug symbol table.

+e* log errors in the text file * instead of displaying the mes-
sages on the terminal screen.

-f merge all C source lines of functions producing code into
the C and Assembly listing. By default, only C lines actually
producing assembly code are shown in the listing.

-fl use callf instruction for machine library calls, used for mod-
els allowing large applications. By default, machine library
functions are called with a call instruction allowing only 64K
application. This option is configured by the memory model
selection.

-l merge C source listing with assembly language code; listing
output defaults to <file>.ls.

-na do not produce an xdef directive for the equate names cre-
ated for each C object declared with an absolute address.

-nc do not allow functions to cross a section boundary.

-no do not produce special directives for the post-optimizer.

-o* write the output to the file * and write error messages to
STDOUT. The default is STDOUT for output and STDERR
for error messages.

-sf produce each function in a different section, thus allowing
the linker to suppress a function if it is not used by the appli-
cation. By default, all the functions are packed in a single
section.

Code generator Option Usage (cont.)

Option Description
© 2008 COSMIC SoftwareCompiler Passes

The cgstm8 Code Generator
Return Status
cgstm8 returns success if it produces no diagnostics.

Example
cgstm8 usually follows cpstm8 as follows:

-v When this option is set, each function name is send to
STDERR when cgstm8 starts processing it.

Code generator Option Usage (cont.)

Option Description

cpstm8 -o \2.cx1 -u -i\cosmic\hstm8 file.c
cgstm8 -o \2.cx2 \2.cx1
© 2008 COSMIC Software Compiler Passes 457

The costm8 Assembly Language OptimizerD

458
The costm8 Assembly Language Optimizer
costm8 is the code optimizing pass of the C compiler. It reads source
files of STM8 assembly language source code, as generated by the
cgstm8 code generator, and writes assembly language statements.
costm8 is a peephole optimizer; it works by checking lines function by
function for specific patterns. If the patterns are present, costm8
replaces the lines where the patterns occur with an optimized line or set
of lines. It repeatedly checks replaced patterns for further optimizations
until no more are possible. It deals with redundant load/store opera-
tions, constants, stack handling, and other operations.

Command Line Options
costm8 accepts the following options, each of which is described in
detail below:

Optimizer Option Usage

Option Description

-c leave removed instructions as comments in the output file.

-d* specify a list of codes allowing specific optimizations func-
tions to be selectively disabled.

-f# define the minimum of bytes for activating the code factori-
zation. Any value smaller than 4 disables the feature. The
default value is 7.

-o* write the output to the file * and write error messages to
STDOUT. The default is STDOUT for output and STDERR
for error messages.

-v write a log of modifications to STDERR. This displays the
number of removed instructions followed by the number of
modified instructions.

costm8 [options] <file>
-c keep original lines as comments
-d* disable specific optimizations
-f# minimum code factorization
-o* output file name
-v print efficiency statistics
© 2008 COSMIC SoftwareCompiler Passes

The costm8 Assembly Language Optimizer
If <file> is present, it is used as the input file instead of the default
STDIN.

Disabling Optimization
When using the optimizer with the -c option, lines which are changed or
removed are kept in the assembly source as comment, followed by a
code composed with a letter and a digit, identifying the internal func-
tion which performs the optimization. If an optimization appears to do
something wrong, it is possible to disable selectively that function by
specifying its code with the -d option. Several functions can be disabled
by specifying a list of codes without any whitespaces. The code letter
can be enter both lower or uppercase.

Return Status
costm8 returns success if it produces no diagnostics.

Example
costm8 is usually invoked after cgstm8 as follows:

cpstm8 -o \2.cx1 -u -i\cosmic\hstm8 file.c
cgstm8 -o \2.cx2 \2.cx1
costm8 -o file.s \2.cx2
© 2008 COSMIC Software Compiler Passes 459

Index
Symbols
#asm

directive 449
#asm directive 54
#endasm

directive 449
#endasm directive 54
#pragma

asm directive 54
directive for inlining 54
endasm directive 54
space directive 49

+dep
linker dependency directive 267

+grp directive 262
+modsl memory model 17
+seg option 258
.bsct section 175
.const

output section 456
segment 269

@ tiny 50
@eeprom

type qualifier 12, 51
@far

.fconst section 41

.fdata section 41, 52
function 41, 62
modifer 39, 62
pointer,size 39

@inline
functions 60

modifier 60
@interrupt

function 58
qualifier 58

@near
.data,.bss sections 52
function 41
modifier 50, 62
modifier,mods 39
modifier,mods0 39
pointer,size 39
variable 62

@near type qualifier 25
@nosvf qualifier 58
@svlreg qualifier 58
@tiny

.bsct,.ubsct sections 52
modifier,modsl 40
modifier,modsl0 39
space modifier 62
variable 62

@vector modifier 59
__ckdend__ 277
__ckdesc__l 276
__idesc__ 273, 274
_asm

argument string length 56
argument string size 56
assembly sequence 55
code optimization 455
in expression 56
lowercase mnemonics 56
Index 1

return type 56
uppercase mnemonics 56

_asm()
function 80
inserting assembler function 76

_Bool
assign expression to 42
consecutive fields 42
data 62
pack local variable 452
packed variables 42
referencing absolute address 46
type name 42
variable 42

_checksum function 92
_checksum16 function 94
_checksum16x function 95
_checksumx function 93
_fctcpy function 103

Numerics
8-bit precision,operation 11

A
abort function 81
abs function 82
absolute

address 290
address in listing 302
hex file generator 9
listing file 302
listing utility 10
map section 170
path name 453
reference address 46
section relocation 268
symbol 261
symbol in library 305
symbol table 257
symbol tables 283
symbol,flagged 283

absolute section 229, 239

acos function 83
address

default format 299, 303
logical end 260
logical start segment 268
logical start set 260
paged format 299, 303
physical 260
physical end 258
physical start 258
physical start segment 268
set logical 260

align directive 188
allocate memory block 193
allocate storage for constants 192
application

embedded 252
non-banked 300
system bootstrap 252

Arccosine 83
Arcsine 84
Arctangent 85
Arctangent of y/x 86
argument

formatted output to buffer 146
formatted output to stdout 136

asembler
include directive 185

asin function 84
assembler

branch shortening 186
C style directives 187
code inline 55
conditional branch range 186
conditional directive 182
create listing file 171
endm directive 179
expression 178
filling byte 171, 188
label 175
listing process 302
listing stream 173
2 Index

macro
instruction 179

macro argument 180
macro directive 179
macro parameter 180
old syntax 186
operator set 178
section name 183
section predefinition 183
sections 183
special parameter \# 180
special parameter * 182
special parameter \0 181
switch directive 183
xbit directive 246

assembleur
debug information

add line 172
label 172

assembly language
code optimizer 458

atan function 85
atan2 function 86
atof function 87
atoi function 88
atol function 89

B
bank

automatic segment creation 260
default mode 311
size setting 258
switched system 268

base directive 189
bias

segment parameter 268
setting 269

bit
address 184
address value 269
allocated section 185
attribute section 185

define aliases 265
number 269
segment 269

bit segment
initialization 270

bitfield
compiler reverse option 73
default order 452
filling 452
filling order 73
reverse order 452
sign check 450

bootloader 274
boundary

round up 260
bsct directive 190
buffer

convert to double 87, 162
convert to integer 88
convert to long 89, 163
convert to unsigned long 164
copy from one to another 130, 131

C
C interface

extra character for far function 62
underscore character prefix 62

C interface to assembly language 62
C library

floating point functions 77
integer functions 76
macro functions 77
package 76

C source
lines merging 456

c_ prefix 343
c_lreg

memory byte 58
c_x

memory byte 58
c_y

memory byte 58
Index 3

call
instruction 456

callf
instruction 456

carry function 90
casting 450
ceil function 91
char

signed 453
unsigned 453

checksum
-ck option 276
crc 277
functions 276
-ik option 277

clabs utility 302
clib utillity 305
clist directive 191, 206, 208, 209, 210,

211, 212, 213, 214, 215, 216
clst utility 294
cobj utility 308
code

factorization 72, 458
smaller 72

code generator
compiler pass 455
error log file 456

code optimizer
compiler pass 458

code/data, no output 258
compare for lexical order 156
compiler

ANSI checking 453
assembler 9
assembler option specification 70
C preprocessor and language parser 8
code generation option specification
70
code generator 9
code optimization 10
code optimizer 9
combination of options 340

command line option 68
configuration file 338
configuration file specification 70
configuration file,predefined option
72
create assembler file only 71
debug information,produce 72
default behavior 68
default configuration file 70
default file names 74
default operations 447
default options 68, 338
driver 4
error files path specification 70
error message 68
exclusive options 340
flags 6
generate error 313
generate error file 75
generate listing 75
header files 78
include path definition 71
invoke 68
listing file 71
listing file path specification 70
log error file 70
name 68
object file path specification 70
optimizer option specification 71
options 68
options request 68
parser option specification 71
predefined option selection 72
preprocessed file only 71
produce assembly file 19
produce listing file 19
programmable option 338, 340
specific options 4
specify options 69
stack long model option 72
stack short model option 72
temporary files path 71
4 Index

type checking 73, 450
user-defined preprocessor symbol 70
verbose mode 20, 71

compute 165
const

@near memory space 44
data 43
qualifier 43

constant
in .text section 456
numeric 176
prefix character 176
string 176
string character 177
suffix character 177

convert
ELF/DWARF format 310
hex format 298

copy 142
cos function 96
cosh function 97
cprd utility 292
cross-reference

information 171
table in listing 173

cvdwarf utility 310

D
d_ prefix 343
data

@far modifier 21
@far pointer representation 65
@near modifier 21
@near pointer representation 65
@tiny modifier 21
@tiny pointer representation 65
automatic initialization 36
char representation 65
float representation 65
initalized 48
initialization 25
int representation 65

long int representation 65
short int representation 65

data object
automatic 292
scope 290
type 290

dc directive 192
dcb directive 193
debug information

adding 453
debug symbol

build table 278
in object file 172
table 290

debugging
data 290
support tools 289

debugging information
data object 290
extract 292
generate 290, 453
line number 290
print file 292
print function 292

default base for numerical constants 189
default placement

.bit segment 269

.bsct segment 269

.bss segment 269

.data segment 269

.text segment 269
definition 278
DEFs 278
dependency

between function 267
descriptor

host to 259
div function 98
dlist directive 194
ds directive 195
Index 5

E
eepera function 99
eeprom

@near modifier 51
erase full space 99
location 12, 51

ELF/DWARF
format converter 10

else directive 196, 197, 200, 206, 208,
214

end directive 198
end5 directive 202
endc directive 208, 214
endif directive 196, 199, 200, 206
endm directive 201, 221, 224, 236
endr 232, 233
enum

size optimization 452
environment symbol 185
equ directive 203, 241
error

assembler log file 171
file name 75
log file 257
message 10
message list 313
multiply defined symbol 175, 282
undefined symbol 279
undefined symbol in listing 172

error message 205
even directive 204
executable image 298
exit 100
exp function 101
expression

evaluation 179
high 179
low 179
page 179

F
fabs function 102

fail directive 205
file length restriction 290
filling byte 195, 204, 229
float

single precision library 271
floating point library

link 76
Floating Point Library Functions 77
floor function 104
fmod function 105
format

ELF/DWARF 310
frexp function 106
function

@inline modifier 60
arguments 292
enforce prototype declaration 73,
452
in separate section 73
prototype declaration 73, 452
recursive 284
returning int 79
suppress 456
suppress unused 73

function arguments 292
Functions Implemented as Macros 77

G
generate

.bsct section 62
hex record 260
in .bit section 62
in .bss section 62
in .const section 62
in .data section 62
in .fconst section 62
in .fdata section 62
in .text section 62
in .ubsct section 62
listing file 172
object file 172

getchar function 107
6 Index

gets function 108
group

option 254

H
-help option 6

I
IEEE

Floating Point Standard 65
if directive 196, 200, 206
if directive 199
ifc directive 207
ifdef directive 208
ifeq directive 209
ifge directive 210
ifgt directive 211
ifle directive 212
iflt directive 213
ifnc directive 216
ifndef directive 214
ifne directive 215
imask function 109
include

directory names list 71, 450
file 263
file before 450
module 271
object file 262
path specification 450
specify path 450

include directive 217
initialization

automatic 273
define option 259
descriptor 273
descriptor address 274
descriptor format 273
first segment 273
initialized segments 273
marker 259
startup routine 274

initialize storage for constants 192
inline

@usea modifier 61
@usex modifier 61
assembly code 54, 55
block inside a function 54
block outside a function 54
carry function 60
function 60
header function 78
imask function 60
irq function 60
user macro name 61
with _asm function 55, 56
with pragma sequences 54

input and output 45
input to output 142
input/output 46
integer

library 271
interrupt

function 59
function in map 284
handler 58
hardware 58
software 58
vectors table 59

irq function 110
isalnum function 111
isalpha function 112
iscntrl function 113
isdigit function 114
isgraph function 115
islower function 116
isprint function 117
ispunct function 118
isspace function 119
isupper function 120
isxdigit function 121

L
labs function 122
Index 7

ldexp function 123
ldiv function 124
library

build and maintain 10
building and maintaining 305
create 305
delete file 305
extract file 306
file 271
floating point 76
integer 76, 271
list file 306
load all files 306
load modules 255
machine 76
path specification 257
replace file 306
scanned 255
single precision 271
Standard ANSI 271
version 271

line number
information 456

link
command file 256
user command file 22

linker
character prefix,comment 255
build freestanding program 252
clnk 9
command file 254
command file example 286
command item 254
comment 255
global command line options 257
output file 253
physical memory 253

list directive 218
listing

cross reference 20
file location 28
file path specification 302

interspersed C and assembly file 19
lit directive 219
literals

in @near space 62
local

labels 57
local directive 176, 220
local variable

reorder 452
locate source file 294
log function 125
log10 function 126
long multiplication 388

M
macro

exit 182
expansion in listing 182
internal label 175
named syntax 181
numbered syntax 180

macro directive 221
main

function 284
main() routine 35
map

file description 284
modules section 284
produce information 257
segment section 284
stack usage section 284
symbols section 284

max function 127
memchr function 128
memcmp function 129
memcpy function 130
memmove function 131
memory

location 46
long range 50
mapped I/O 46

memory models 12, 39
8 Index

memset function 132
messg directive 223
mexit directive 222, 224
min function 133
mlist directive 225, 238
modf function 134
Motorola

S-Records format 299
standard S-record,generating 23

moveable
code section 274
function used 275

moveable code segment 103

N
named syntax, example 222, 233
new

segment control 254
start region 264

nolist directive 226
nopage directive 227
numbered syntax, example 222, 233

O
object

file location 28
image 251
module 252
module inspector 10
relocatable 308
relocatable file output 172
relocatable file size 308
size 308

offset
segment parameter 268
setting 269

offset directive 228
optimization

disable selectively 459
keep line 459
specific code 458

option

global 256
org directive 229
output

default format 299
file name 256
listing line number 450
specify format 136

override
data bias 298
text bias 298

P
page

address extension 179
value 179, 300

page directive 230
page header 245
paginating output 295
parser

behaviour 451
compiler pass 448
error log file 450

plen directive 231
pointer

narrow 452
pow function 135
prefix

filename 453
preprocessor

#define 448
#include 448
run only 450

printf function 136
private name region

use 279
program

stop execution of 100
putchar function 141
puts function 142

R
rand function 143
Index 9

range specification 295
redirect output 295
REFs 278
region

name 254
private 264
public 264
use of private name 279

register
input/output 48

relative address 290
repeat directive 232
repeatl directive 233
restore directive 235
rexit directive 233, 236
ROM 46
runtime startup

modifying 34

S
save directive 237
section

.bit 21, 42

.bsct 21, 49

.bss 21, 50

.const 21

.data 21, 50

.eeprom 21, 51

.fconst 21

.fdata 21

.text 21

.ubsct 21, 49
assembler directive 239
crossing boundary 41
curly braces,initialized data 52
definition 251
name 53
parenthesis,code 52
pragma definition 52
pragma directive 53
single 456
square brackets, uninitialized data 52

unused 259
user defined 52

sections
default 52
predefined 52
relocation 268

segment
bsct start address 261
bss start address 261
build new 271
control options 256, 258
data start address 261
definition 251
fill 258
follow current 258
maximum size 259
name 260
overlap checking 260, 268
overlapping 271
overlapping control 260
root 259
round up address 260
section overlap 261
space name 268
start,new 258
text start address 261
zero size 255

separated address space 268
set directive 241
share

local variable 452
short addressing 12
sin function 144
sinh function 145
source files listing 294
source listings 294
space

for function 451
for variable 451

space name
definition 260

spc directive 242
10 Index

sprintf function 146
sqrt function 147
srand function 148
stack

amount of memory 284
check overflow 455
need 284

stack model
long 40, 50
long,64K 39
short 39

stack pointer 35
standard ANSI libraries 271
startup file

crts.sm8 34
crtsi.s 38

static data 292
STM8

addressing mode 175
instruction set 174

ST-Microelectronics syntax 174
strcat function 149
strchr function 150
strcmp function 151
strcpy function 152
strcspn function 153
strings 156
strlen function 154
strncat function 155
strncmp function 156
strncpy function 157
strpbrk function 158
strrchr function 159
strspn function 160
strstr function 161
strtod function 162
strtol function 163
strtoul function 164
suffix

assembly file 68
C file 68
input 303

output 303
suffix letter 177
suppress pagination 295
switch directive 243
symbol

alias 280
define 254
define alias 265
define new 265
definition 265
export 283
logical end value,equal 266
logical start value,equal 266
physical end value,equal 266
physical start value,equal 266
size value,equal 266
sort alphabetically 257
sort by address 257
user-defined 450

symbol table
add 265
information 308
new 278

T
tab character setting 244
tabs directive 244
tan function 165
tangent 165
tanh function 166
task entries 284
title directive 245
tolower function 167
toupper function 168
translate executable images 298

U
unreachable code

eliminate 11

V
variable
Index 11

reorder local 452
volatile

data 43
qualifier 43
using keyword 43

W
warnings 73, 453
window

set shift 257, 310
size 260

X
xbit

assembler directive 185
xbit.b

assembler directive 185
xdef directive 247, 248
xref directive 246, 247, 248

Z
zero page

@tiny modifier 49
section 190
size 39, 40, 49
12 Index

	Preface
	Organization of this Manual

	Introduction
	Introduction
	Document Conventions
	Typewriter font
	Italics
	[Brackets]
	Conventions
	Command Line
	Flags

	Compiler Architecture
	Predefined Symbol
	Linking
	Programming Support Utilities
	Listings
	Optimizations
	Support for ROMable Code
	Support for eeprom
	Memory Models

	Tutorial Introduction
	Acia.c, Example file
	Default Compiler Operation

	Compiling and Linking
	Step 1: Compiling
	Step 2: Assembler
	Step 3: Linking
	Step 4: Generating S-Records file

	Linking Your Application
	Generating Automatic Data Initialization
	Specifying Command Line Options

	Programming Environments
	Introduction
	Modifying the Runtime Startup
	Description of Runtime Startup Code

	Initializing data in RAM
	Memory Models for code smaller than 64K
	Memory Models for code larger than 64K
	Handling Large Code and Constants
	Bit Variables
	The const and volatile Type Qualifiers
	Performing Input/Output in C
	Referencing Absolute Addresses
	Accessing Internal Registers
	Placing Data Objects in The Bss Section
	Placing Data Objects in Short Range Memory
	Setting Zero Page Size

	Placing Data Objects in Long Range Memory
	Placing Data Objects in the EEPROM Space
	Redefining Sections
	Inserting Inline Assembly Instructions
	Inlining with pragmas
	Inlining with _asm
	Inlining Labels

	Writing Interrupt Handlers
	Placing Addresses in Interrupt Vectors
	Inline Function
	Interfacing C to Assembly Language
	Register Usage
	Data Representation

	Using The Compiler
	Invoking the Compiler
	Compiler Command Line Options

	File Naming Conventions
	Generating Listings
	Generating an Error File
	Return Status
	Examples
	C Library Support
	How C Library Functions are Packaged
	Inserting Assembler Code Directly
	Linking Libraries with Your Program
	Integer Library Functions
	Common Input/Output Functions
	Functions Implemented as Macros
	Including Header Files

	Descriptions of C Library Functions
	Generate inline assembly code
	Abort program execution
	Find absolute value
	Arccosine
	Arcsine
	Arctangent
	Arctangent of y/x
	Convert buffer to double
	Convert buffer to integer
	Convert buffer to long
	Test or get the carry bit
	Round to next higher integer
	Verify the recorded checksum
	Verify the recorded checksum
	Verify the recorded checksum
	Verify the recorded checksum
	Cosine
	Hyperbolic cosine
	Divide with quotient and remainder
	Erase the full eeprom space
	Exit program execution
	Exponential
	Find double absolute value
	Copy a moveable code segment in RAM
	Round to next lower integer
	Find double modulus
	Extract fraction from exponent part
	Get character from input stream
	Get a text line from input stream
	Test the interrupt mask bit
	Test the interrupt line level
	Test for alphabetic or numeric character
	Test for alphabetic character
	Test for control character
	Test for digit
	Test for graphic character
	Test for lowercase character
	Test for printing character
	Test for punctuation character
	Test for whitespace character
	Test for uppercase character
	Test for hexadecimal digit
	Find long absolute value
	Scale double exponent
	Long divide with quotient and remainder
	Natural logarithm
	Common logarithm
	Test for maximum
	Scan buffer for character
	Compare two buffers for lexical order
	Copy one buffer to another
	Copy one buffer to another
	Propagate fill character throughout buffer
	Test for minimum
	Extract fraction and integer from double
	Raise x to the y power
	Output formatted arguments to stdout
	Put a character to output stream
	Put a text line to output stream
	Generate pseudo-random number
	Sin
	Hyperbolic sine
	Output arguments formatted to buffer
	Real square root
	Seed pseudo-random number generator
	Concatenate strings
	Scan string for first occurrence of character
	Compare two strings for lexical order
	Copy one string to another
	Find the end of a span of characters in a set
	Find length of a string
	Concatenate strings of length n
	Compare two n length strings for lexical order
	Copy n length string
	Find occurrence in string of character in set
	Scan string for last occurrence of character
	Find the end of a span of characters not in set
	Scan string for first occurrence of string
	Convert buffer to double
	Convert buffer to long
	Convert buffer to unsigned long
	Tangent
	Hyperbolic tangent
	Convert character to lowercase if necessary
	Convert character to uppercase if necessary

	Using The Assembler
	Invoking castm8
	Object File
	Listings
	Assembly Language Syntax
	Instructions
	Labels
	Temporary Labels
	Constants
	Expressions
	Macro Instructions
	Conditional Directives
	Sections
	Bit Handling
	Includes

	Branch Optimization
	Old Syntax
	C Style Directives
	Assembler Directives
	Align the next instruction on a given boundary
	Define the default base for numerical constants
	Switch to the predefined .bsct section.
	Turn listing of conditionally excluded code on or off.
	Allocate constant(s)
	Allocate constant block
	Turn listing of debug directives on or off.
	Allocate variable(s)
	Conditional assembly
	Conditional assembly
	Stop the assembly
	End conditional assembly
	End conditional assembly
	End macro definition
	End repeat section
	Give a permanent value to a symbol
	Assemble next byte at the next even address relative to the start of a section.
	Generate error message.
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Include text from another text file
	Turn on listing during assembly.
	Give a text equivalent to a symbol
	Create a new local block
	Define a macro
	Send a message out to STDOUT
	Terminate a macro definition
	Turn on or off listing of macro expansion.
	Turn off listing.
	Disable pagination in the listing file
	Creates absolute symbols
	Sets the location counter to an offset from the beginning of a section.
	Start a new page in the listing file
	Specify the number of lines per pages in the listing file
	Repeat a list of lines a number of times
	Repeat a list of lines a number of times
	Restore saved section
	Terminate a repeat definition
	Save section
	Turn on or off section crossing
	Define a new section
	Give a resetable value to a symbol
	Insert a number of blank lines before the next statement in the listing file.
	Place code into a section.
	Specify the number of spaces for a tab character in the listing file
	Define default header
	Declare bit symbol as being defined elsewhere
	Declare a variable to be visible
	Declare symbol as being defined elsewhere

	Using The Linker
	Introduction
	Overview
	Linker Command File Processing
	Inserting comments in Linker commands

	Linker Options
	Global Command Line Options
	Segment Control Options
	Segment Grouping
	Linking Files on the Command line
	Example
	Include Option
	Example
	Private Region Options
	Symbol Definition Option
	Reserve Space Option
	Handle Dependencies

	Section Relocation
	Address Specification
	Overlapping Control

	Setting Bias and Offset
	Setting the Bias
	Setting the Offset
	Using Default Placement
	Bit Segment Handling

	Linking Objects
	Linking Library Objects
	Library Order
	Libraries Setup Search Paths

	Automatic Data Initialization
	Descriptor Format

	Moveable Code
	Checksum Computation
	DEFs and REFs
	Special Topics
	Private Name Regions
	Renaming Symbols
	Absolute Symbol Tables

	Description of The Map File
	Return Value
	Linker Command Line Examples

	Debugging Support
	Generating Debugging Information
	Generating Line Number Information
	Generating Data Object Information

	The cprd Utility
	Command Line Options
	Examples

	The clst utility
	Command Line Options

	Programming Support
	The chex Utility
	Command Line Options
	Return Status
	Examples

	The clabs Utility
	Command Line Options
	Return Status
	Examples

	The clib Utility
	Command Line Options
	Return Status
	Examples

	The cobj Utility
	Command Line Options
	Return Status
	Examples

	The cvdwarf Utility
	Command Line Options
	Return Status
	Examples

	Compiler Error Messages
	Parser (cpstm8) Error Messages
	Code Generator (cgstm8) Error Messages
	Assembler (castm8) Error Messages
	Linker (clnk) Error Messages

	Modifying Compiler Operation
	The Configuration File
	Changing the Default Options
	Creating Your Own Options

	Example

	STM8 Machine Library
	Update an int bitfield in near memory
	Eeprom char bit field update
	Write a char in eeprom
	Write a long int in eeprom
	Write a short int in eeprom
	Move a structure in eeprom
	Add float to float
	Compare floats
	Divide float by float
	Add float to float in memory
	Multiply float by float in memory
	Subtract float from float in memory
	Multiply float by float
	Negate a float
	Subtract float from float
	Convert float to integer
	Convert float into long integer
	Compare a float in memory to zero
	Get a long word from memory
	Get a long word from memory
	Get a word from far memory
	Get a word from far memory
	Get a word from far memory
	Get a word from far memory
	Get a word from far memory
	Get a word from far memory
	Quotient of integer division
	Integer multiplication
	Convert integer into float
	Convert integer into long
	Convert integer into long
	Convert integer into long
	Perform C switch statement on char
	Perform C switch statement on long
	Perform C switch statement on integer
	Long integer addition
	Long integer addition
	Bitwise AND for long integers
	Long integer compare
	Quotient of long integer division
	Long addition
	Long addition
	Long bitwise AND
	Long shift left
	Long multiplication in memory
	Negate a long integer in memory
	Long bitwise OR
	Signed long shift right
	Long subtraction
	Long subtraction
	Unsigned long shift right
	Long bitwise exclusive OR
	Long integer shift left
	Remainder of long integer division
	Multiply long integer by long integer
	Negate a long integer
	Bitwise OR with long integers
	Long integer right shift
	Long test against zero
	Long integer subtraction
	Long integer subtraction
	Long integer compare with overflow
	Convert long integer into float
	Load memory into long register
	Quotient of unsigned long integer division
	Remainder of unsigned long integer division
	Unsigned long integer shift right
	Bitwise exclusive OR with long integers
	Compare a long integer to zero
	Far pointer addition
	Far pointer addition
	Put a long integer in memory
	Put a long integer in memory
	Put a word in far memory
	Get a far pointer from far memory
	Get a far pointer from far memory
	Get a far pointer from far memory
	Get a far pointer from far memory
	Store long register in far memory
	Store long register in memory
	Quotient of signed char division
	Quotient of signed char division
	Remainder of signed char division
	Remainder of signed char division
	Multiply long integer by unsigned byte
	Convert unsigned integer into float
	Convert unsigned integer into long
	Convert unsigned integer into long
	Convert unsigned integer into long
	Convert unsigned long integer into float
	Multiply unsigned integers with long result
	Store a far pointer into far memory
	Copy a structure into another
	Copy a structure in far memory
	Copy a large structure in far memory
	Copy a structure into another
	Copy a large structure into another
	Store a far pointer into far memory
	Copy a structure into another
	Copy a structure in far memory
	Copy a large structure in far memory
	Copy a structure into another
	Copy a large structure into another

	Compiler Passes
	The cpstm8 Parser
	Command Line Options
	Extra verifications
	Return Status
	Example

	The cgstm8 Code Generator
	Command Line Options
	Return Status
	Example

	The costm8 Assembly Language Optimizer
	Command Line Options
	Disabling Optimization
	Return Status
	Example

